标题 | 详情 |
---|---|
作者简介 | 愚公搬代码 |
头衔 | 华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主,腾讯云内容共创官,掘金优秀博主,亚马逊技领云博主,51CTO博客专家等。 |
近期荣誉 | 2022年度博客之星TOP2,2023年度博客之星TOP2,2022年华为云十佳博主,2023年华为云十佳博主,2024年华为云十佳博主等。 |
博客内容 | .NET、Java、Python、Go、Node、前端、IOS、Android、鸿蒙、Linux、物联网、网络安全、大数据、人工智能、U3D游戏、小程序等相关领域知识。 |
欢迎 | 👍点赞、✍评论、⭐收藏 |
文章目录
🚀前言
在人工智能的快速发展中,智能代理(AI Agent)成为了推动各行各业智能化转型的重要力量。无论是在智能客服、智能推荐,还是在自动化决策系统中,智能代理都扮演着至关重要的角色。然而,很多人对智能代理的内部架构和组成部分仍然感到陌生。它们是如何工作的?又由哪些关键组件构成?
在这篇文章中,我们将深入探讨智能代理的架构与组成部分,解析其背后的设计理念和技术原理。我们将了解智能代理的核心模块,包括感知、决策、行动和学习等功能,并探讨它们如何协同工作,共同实现智能代理的全面功能。通过对这些架构要素的深入分析,您将能够更好地理解智能代理的运作机制,以及其在不同应用场景中的灵活性和适应性。
🚀一、Al Agent的架构和组成
随着大语言模型(LLM)技术的不断成熟,AI Agent的架构和组成变得愈加复杂和多样化。一个功能完善、性能卓越的AI Agent系统需要协调多个模块和组件的工作,构建合理的架构和流程,才能真正实现智能行为和人机交互。
本节将从AI Agent的结构、主流架构和主要模块三个方面阐述AI Agent的架构和组成,以期为AI Agent的研究和应用提供参考与指导。
🔎1.AI Agent的结构
AI Agent是一个旨在与其环境交互、感知数据并根据这些数据采取行动以实现特定目标的软件程序或硬件设备。AI Agent能够模拟智能行为,既可以像基于规则的系统那样简单,也可以像高级机器学习模型那样复杂。它们通常基于预先设定的规则或经过训练的模型来做出决策,有时还需要外部控制或监督。
根据设计目的和交互方式,AI Agent可以分为两类:自主Agent和生成式Agent。自主Agent是一种高级的软件程序,能够在没有人为控制的情况下独立运行,具有自我思考、行动和学习的能力,不依赖于人类的持续输入。自主Agent可以广泛应用于多个领域,如医疗保健、金融和银行等行业,以提高效率和顺畅运行。自主Agent可以适应新情况,并通过自身的内部系统做出决策。
AI Agent的结构可以分为四模块结构和三模块结构。下面将详细说明这两种结构。
🦋1.1 四模块结构
通用的AI Agent通常包含以下四个核心模块:
-
环境:
- 指AI Agent运行的区域或域,可以是物理空间(如工厂车间)或数字空间(如网站)。
-
传感器:
- 这些工具用于感知环境,通常包括摄像头、麦克风等传感器,使Agent能够了解周围发生的情况。
-
执行器:
- 执行器是AI Agent与环境交互的工具,包括机械臂、计算机屏幕或其他可以改变环境的设备。
-
决策机制:
-
决策机制是AI Agent的大脑,用于处理来自传感器的信息,并决定如何使用执行器采取行动。决策机制反映了AI Agent的主动性与反应能力,可以采用基于规则的系统、专家系统或神经网络等方式来做出决策。
-
决策机制的重要性:这是AI Agent能够做出明智选择并有效执行任务的核心。它帮助Agent根据不同的情况采取不同的行动。
-
这些模块一起构成了AI Agent的框架。为了提升Agent的性能,学习系统可以使其从经验和与环境的互动中学习,使用强化学习、监督学习和无监督学习等技术。
- 学习系统:AI Agent通过学习强化其能力,不断改善和调整其决策和行动模式。
- 反馈与总结:学习系统通过分析数据、事件等反馈,进行自我总结和改进。需要注意的是,学习系统不会直接参与Agent的执行过程,而是作为后续改进的一部分。
案例:四模块框架在中国人民大学的应用
中国人民大学高瓴人工智能学院在论文《A Survey on Large Language Model Based Autonomous Agents》中提出了一种四模块的统一框架。该框架包含四个模块:
-
分析模块:
- 用于确定Agent的角色(如程序员、教师、领域专家等)。该模块帮助定义Agent在任务中的职责,并影响LLM(大语言模型)的行为。配置Agent角色有三种常用方法:手工制作方法、GPT生成方法和数据集对齐方法。
-
记忆模块:
- 记忆模块负责记录AI Agent从环境中感知到的信息,并利用这些记忆来促进未来的决策。记忆模块能够帮助Agent积累经验,自我进化,并更加高效和合理地完成任务。
-
规划模块:
- 规划模块赋予AI Agent解决复杂任务时所需要的思考和规划能力。人类通常会将复杂任务分解为多个简单子任务,规划模块使Agent能够以类似方式进行任务规划。该模块包括无反馈规划和有反馈规划两种类型。
-
行动模块:
- 行动模块负责将决策转化为实际的行动和结果。它直接与环境交互,确保Agent完成任务并达到预定目标。
这些模块共同作用,确保AI Agent能够高效执行任务并不断提升自身能力。
除了上述四个核心模块,这一框架还包括了AI Agent的学习策略。学习策略有助于Agent从不同的来源获取知识,并进一步优化其行为。这些策略包括:
- 从示例中学习:Agent通过观察和模仿示例来学习行为模式。
- 从环境反馈中学习:通过与环境互动,Agent能够根据反馈调整自身行为,提升任务完成效率。
- 从人类反馈中学习:Agent通过与人类互动,接受外部的指导和反馈,进一步改进自己的决策和行动。
总结来说,四模块结构为AI Agent的设计提供了清晰的框架,使其能够有效感知环境、制定决策并执行任务,同时通过不断学习和调整来提升自身能力。这些模块的协同工作,使得自主Agent能够在不依赖人类干预的情况下完成复杂任务,并适应不断变化的环境。
🦋1.2 三模块结构
三模块结构的AI Agent框架由复旦大学NLP团队在其论文《The Rise and Potential of Large Language Model Based Agents: A Survey》中提出,该框架被称为“大脑、感知、行动”模型,如图所示。这一结构将AI Agent的工作分为三个主要模块:大脑、感知和行动,每个模块都扮演着关键角色,以确保Agent能够高效地感知、处理信息并作出决策。下面将对每个模块进行详细说明。
☀️1.2.1 大脑模块
大脑模块是AI Agent的核心部分,主要由一个大型语言模型(LLM)组成。该模块不仅负责存储知识和记忆,还承担信息处理、决策、推理和规划等复杂功能。它使得AI Agent能够应对未知任务,进行自主学习和适应。
- 功能:
- 知识存储:大脑模块不仅存储语言知识,还包括常识和专业领域知识。这些知识库支持Agent在不同情境下进行有效决策。
- 记忆:大脑模块能够通过总结、向量化等方式保存Agent的过去经历,包括观察、思考和行动的结果。这些记忆有助于Agent在未来的任务中做出更加明智的决策。
- 推理与规划:大脑模块支持推理过程