LangChain之工具Tools(下)

SQLDatabase工具

在 LangChain 中,SQLDatabase工具可以用来与SQL数据库进行交互。

SQLDatabase是数据库连接的包装器,为了与SQL数据库通信,它使用SQLAlchemy Core API 。

准备数据

这里先使用sqlite3数据库,创建一张user表,同时插入一些测试数据。

# 导入sqlite3库,一个Python内置的轻量级数据库
import sqlite3

print("------------------------连接数据库------------------------")
# 连接数据库
conn = sqlite3.connect('demo.db')
cursor = conn.cursor()

print("------------------------数据表创建------------------------")

# 执行SQL命令 创建User表
cursor.execute('''
        CREATE TABLE User (
            ID INTEGER PRIMARY KEY, 
            Name TEXT NOT NULL, 
            Age INT,
            Money REAL,
            CreateDate DATE DEFAULT CURRENT_DATE 
        );
    ''')

print("------------------------数据插入------------------------")
# 插入数据
users = [
    ('Java', 10, 20.5),
    ('Python', 20, 0),
    ('Vue', 33, 55.0),
    ('Go', 5, 100.55),
]

for user in users:
    cursor.execute('''
        INSERT INTO User (Name, Age, Money) 
        VALUES (?, ?, ?);
    ''', user)

print("------------------------查询数据------------------------")
users = cursor.execute("SELECT *  from User")
for row in users:
    print(row)

# 提交更改
conn.commit()

# 关闭数据库连接
conn.close()

初始化数据库

首先连接到sqlite数据库,进行数据库初始化

from langchain_community.utilities import SQLDatabase
import sqlalchemy as sa

# 连接到demo数据库
db = SQLDatabase.from_uri("sqlite:///demo.db")

光标查询​

查询模式:cursor,将结果作为SQLAlchemy的CursorResult实例返回

result = db.run("SELECT * FROM User LIMIT 10;", fetch="cursor")
print(type(result))
print(list(result.mappings()))
<class 'sqlalchemy.engine.cursor.CursorResult'>
[{'ID': 1, 'Name': 'Java', 'Age': 10, 'Money': 20.5, 'CreateDate': '2024-04-14'},
{'ID': 2, 'Name': 'Python', 'Age': 20, 'Money': 0.0, 'CreateDate': '2024-04-14'}, 
{'ID': 3, 'Name': 'Vue', 'Age': 33, 'Money': 55.0, 'CreateDate': '2024-04-14'}, 
{'ID': 4, 'Name': 'Go', 'Age': 5, 'Money': 100.55, 'CreateDate': '2024-04-14'}]

字符串查询

查询模式:all 和one,以字符串格式返回结果。

result = db.run("SELECT * FROM User LIMIT 10;", fetch="all")
print(type(result))
print(result)
<class 'str'>
[(1, 'Java', 10, 20.5, '2024-04-14'), (2, 'Python', 20, 0.0, '2024-04-14'), (3, 'Vue', 33, 55.0, '2024-04-14'), (4, 'Go', 5, 100.55, '2024-04-14')]

带参数查询​

可以使用parameters可选参数,来绑定查询参数

result = db.run(
    "SELECT * FROM User WHERE Name LIKE :search;",
    parameters={"search": "P%"},
    fetch="cursor",
)
print(list(result.mappings()))
[{'ID': 2, 'Name': 'Python', 'Age': 20, 'Money': 0.0, 'CreateDate': '2024-04-14'}]

使用SQLAlchemy查询​

SQLDatabase工具除了使用纯文本SQL语句之外,其适配器还接受 SQLAlchemy 可选择项。

import sqlalchemy as sa
# 为了在sqlalchemy 的 Core API 上构建一个可选择的,需要一个表的定义。
metadata = sa.MetaData()
user = sa.Table(
    "User",
    metadata,
    sa.Column("Id", sa.INTEGER, primary_key=True),
    sa.Column("Name", sa.TEXT),
    sa.Column("Age", sa.INT),
    sa.Column("Money", sa.REAL),
)

# 构建一个查询语义
query = sa.select(user).where(user.c.Name.like("J%"))
# 执行查询
result = db.run(query, fetch="cursor")
print(list(result.mappings()))
[{'Id': 1, 'Name': 'Java', 'Age': 10, 'Money': 20.5}]

使用自然语言查询数据库

LangChain提供了与SQL数据库交互的工具:

create_sql_query_chain:基于用户自然语言问题构建SQL查询

SQLDatabaseChain:使用链进行查询、创建和执行来查询SQL数据库

create_sql_agent:使用代理进行健壮和灵活的与SQL数据库交互

这里使用create_sql_query_chain链+SQLDatabase工具实现:将自然语言转换成数据库的SQL查询。

from langchain_community.utilities import SQLDatabase
from langchain.chains.sql_database.query import create_sql_query_chain

# 连接 MySQL 数据库
db_user = "root"
db_password = "12345678"
db_host = "IP"
db_port = "3306"
db_name = "demo"
db = SQLDatabase.from_uri(f"mysql+pymysql://{db_user}:{db_password}@{db_host}:{db_port}/{db_name}")

print("数据库方言:", db.dialect)
print("获取数据表:", db.get_usable_table_names())

# 执行查询
res = db.run("SELECT count(*) FROM tb_users;")
print(type(res))
print("查询结果:", res)

from langchain_openai import ChatOpenAI

# 初始化大模型
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = create_sql_query_chain(llm=llm, db=db)
response = chain.invoke({"question": "查询数据表tb_users中的用户,要求年龄大于20"})
print("Chain执行结果:"+ response)

# 删除response无用部分
sql = response.replace("sql: ", "").replace("```sql", "").replace("```", "")
print("自然语言转SQL:" + sql)
res = db.run(sql)
print("查询结果:", res)

执行结果如下:
在这里插入图片描述

使用其他工具

Tavily Search工具

Tavily的搜索API是一个专门为人工智能代理(llm)构建的搜索引擎,可以快速提供实时、准确和真实的结果。

配置环境变量

访问Tavily(用于在线搜索)注册账号并登录,获取API 密钥

设置OpenAI和TAVILY的API密钥

import os

# 设置OpenAI的BASE_URL、API_Key
os.environ["OPENAI_BASE_URL"] = "https://xxx.com/v1"
os.environ["OPENAI_API_KEY"] = "sk-BGFnOL9Q4c1234fsfsdaf9b4813bc437B82c2"

# 设置tavily
os.environ["TAVILY_API_KEY"] = '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'

应用示例

from langchain import hub
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_openai import ChatOpenAI

#  使用Tavily搜索工具
tools = [TavilySearchResults(max_results=1)]

# 获取要使用的提示
prompt = hub.pull("hwchase17/openai-tools-agent")

# 初始化大模型
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)

# 构建 OpenAI 工具代理
agent = create_openai_tools_agent(llm, tools, prompt)

# 通过传入代理和工具创建代理执行程序
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

# 运行代理
agent_executor.invoke({"input": "目前市场上黄金的平均售价是多少?"})

在这里插入图片描述

Dall-E图像生成工具

OpenAI的Dall-E是使用深度学习方法开发的文本到图像模型,可从自然语言描述(提示)生成数字图像。

使用感受:效果不咋滴。

import os

# 设置OpenAI的BASE_URL、API_Key
os.environ["OPENAI_BASE_URL"] = "https://xxx.com/v1"
os.environ["OPENAI_API_KEY"] = "sk-BGFnOL9Q4c1234fsfsdaf9b4813bc437B82c2"

from langchain.chains import LLMChain
from langchain_community.utilities.dalle_image_generator import DallEAPIWrapper
from langchain_core.prompts import PromptTemplate
from langchain_openai import OpenAI

llm = OpenAI(temperature=0.9)

# prompt = PromptTemplate(
#     input_variables=["image_desc"],
#     template="根据描述生成图像: {image_desc}",
# )
# chain = LLMChain(llm=llm, prompt=prompt)
# image_url = DallEAPIWrapper().run(chain.run("Create an image of a halloween night at a haunted museum"))
# print(image_url)

from langchain.agents import  load_tools, initialize_agent

tools = load_tools(["dalle-image-generator"])
agent = initialize_agent(tools, llm, agent="zero-shot-react-description")
image_url = agent.run("Create an image of a halloween night at a haunted museum")
print(image_url)

ArXiv工具

在LangChain中,ArXiv工具是一个用于与arXiv.org(一个收集物理学、数学、计算机科学、量子生物学和统计学等领域的学术论文的网站)交互的工具。

Arxiv工具是围绕Arxiv.org的封装工具,可用于回答关于各领域科学文章的问题,适用于物理学、数学、计算机科学等领域。输入应该是搜索查询内容。

安装arxiv python包

pip install arxiv

假设你是一名计算机科学专业的学生,正在研究深度学习在图像识别领域的最新进展。你可以使用ArXiv工具来搜索相关论文。

from langchain_openai import ChatOpenAI
from langchain.agents import load_tools, create_react_agent, AgentExecutor

# 初始化模型和工具
llm = ChatOpenAI(temperature=0.0)
tools = load_tools(
    ["arxiv"],
)

# 获取提示模板
prompt = hub.pull("hwchase17/react")
# 初始化Agent
agent = create_react_agent(llm, tools, prompt)
# 创建agent_executor
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

# 定义搜索关键字:深度学习在图像识别领域的最新进展
keywords = "Recent advances in deep learning in image recognition"
# 运行链
res = agent_executor.invoke({"input": keywords})
print(res)

输出:
在这里插入图片描述
在这里插入图片描述

### 如何在 LangChain 中创建或使用自定义 Tools #### 创建简单工具 LangChain 提供了一个灵活的方式来定义和使用工具。可以通过继承 `BaseTool` 类来创建自定义工具[^1]。以下是实现的一个基本示例: ```python from langchain.agents import Tool from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.chat_models import ChatOpenAI from langchain.utilities import SerpAPIWrapper class MyCustomSearchTool(Tool): name = "My Custom Search" description = "A tool that uses a search engine to find information on the web." def _run(self, query: str) -> str: """Use the SerpAPI to run a search.""" search = SerpAPIWrapper() return search.run(query) async def _arun(self, query: str) -> str: """Use the SerpAPI asynchronously to run a search.""" search = SerpAPIWrapper() return await search.arun(query) ``` 在此代码片段中,我们定义了一个名为 `MyCustomSearchTool` 的类,它实现了 `_run` 和 `_arun` 方法用于同步和异步操作[^3]。 #### 加载预定义工具并修改其属性 除了创建自定义工具外,还可以加载现有的工具并通过调整它们的属性来自定义行为。例如,可以更改工具名称或其他参数: ```python from langchain.llms import OpenAI from langchain.agents.agent_toolkits import create_csv_agent llm = OpenAI(temperature=0) tools = load_tools(["serpapi", "llm-math"], llm=llm) tools[0].name = "Google Search" # 修改第一个工具的名字为 Google Search ``` 这段代码展示了如何加载一组预先构建好的工具,并通过索引访问这些工具对象以更新特定字段。 #### 设置工具优先级 当多个工具可能匹配某个输入时,设置优先级可以帮助决定哪个工具应该被优先考虑执行任务。虽然具体方法取决于所使用的代理类型及其配置方式,但在某些情况下可以直接指定顺序或者权重值给各个工具实例作为参考依据之一来进行处理逻辑上的优化设计。 #### 使用视频资源进一步学习 对于更深入的理解以及实际应用中的技巧演示,《Create Custom Tools for Chatbots in LangChain》提供了详细的讲解与示范[^2]。观看此视频能够帮助开发者更好地掌握定制化聊天机器人所需的各种技能点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CodeDevMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值