二叉排序树(BST)
题目引入
- 需求:对数列{7,3,10,12,1,5,9}进行高效的查询和添加。
- 分析:
- 使用数组:数组未排序,优点直接在尾部添加,速度快,查找速度慢:数组已经排序,使用二分查找,速度较快,但是添加元素,中间插入,数组会整体后移,速度慢。
- 使用链式存储 — 链表:添加和删除节点的速度快,但是查找速度慢
- 使用二叉排序树:检索速度快,查找速度快,同时比那与添加和修改。
二叉排序树的介绍
- 二叉排序树:BST(Binary Sort()Search Tree),对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点比当前的值大。(左小右大)
- 特别的说明:如果擦加入的值与某点相同,就放在左子结点,确保不出现两个相同节点在同一层,互为左右节点。
添加节点—代码实现:
class BinarySortTree
public void add(Node node) {
if (root == null) {
root = node;
} else {
root.add(node);
}
}
class Node
public void add(Node node){
if (node == null){
return;
}
if(node.value < this.value){
if (this.left == null){
this.left = node;
}else{
this.left.add(node);
}
}else{
if (this.right == null){
this.right = node;
}else{
this.right.add(node);
}
}
}
总结与分析:
- 一个方法操作对象除了有形参列表,还有调用方法的对象,所以,在处理添加方法时,没有必要再增加一个形参对象root,直接操作当前调用方法的this。
- 在调用左右各子节点的成员变量时,必须要判定左右各子结点是否为空,在进行判定。
删除节点—代码实现:
思路分析
- 三种情况:
- 删除叶子节点
- 删除只有一个子树的结点
- 删除有两个子树的结点
- 思路分析:
-
删除叶子节点
- 找到要删除的结点targetNode的父节点parent,有以下两种情况
- 没有父节点,根节点
- 有父节点,非根节点
- 确定targetNode是parent的左子节点还是右子节点
- 左子节点:parent.left = null
- 右子节点:parent.right = null
- 找到要删除的结点targetNode的父节点parent,有以下两种情况
-
删除有一棵子树的结点
- 找到targetNode的父节点parent
- 确定targetNode是父节点的左子节点还是右子节点,和targetNode的子节点是targetNode的左子节点,还是右子节点;
- targetNode是parent的左子节点,targetNode仅有左子树,parent.left = targetNode.left;
- targetNode是parent的左子节点,targetNode仅有右子树,parent.left = targetNode.right:
- targetNode是parent的右子节点,targetNode仅有左子树,parent.right = targetNode.left;
- targetNode是parent的右子节点,targetNode仅有右子树,parent.right = targetNode.right;
-
删除的目标节点TargetNode右两个子树
- 找到待删除结点TargetNode的父节点parent
- 确定待删除结点TargetNode是parent的左节点还是右节点
- TargetNode是parent的左节点,从TargetNode左子树选出最大的结点取代TargetNode,或者是从右子树找出最小的结点,取代TargetNode结点
- TargetNode是parent的右节点,从TargetNode的左子树选出最大的结点取代TargetNode,并删除;或者从TargetNode的右子树选出最小结点取代TargetNode结点。
-
代码实现
- 找到待删除结点的父节点
class Node:查找待删除结点的对应结点
public Node search(int value){
if (this == null){
return null;
}
if (value == this.value){
return this;
}else if(value < this.value){
//如果查找的值小于当前节点的值,那就向左进行递归
//还有一个问题:不知道但前指针存不存在,有可能为零
if (this.left == null){
return null;
}
return this.left.search(value);
}else{
//如果当前的值大于当前节点的值,那就向右进行递归
//问题:不知道右子节点存不存在
if (this.right == null){
return null;
}
return this.right.search(value);
}
}
//查找待删除结点的父节点
查找待删除结点的父节点
/**
*
* @param value 需要查找的节点值
* @return 返回的是要删除的节点的父节点,如果没有就返回null
*/
public Node searchParent(int value){
//如果当前结点就是需要返回的父节点,说明子节点就是需要查找的结点
if ((this.left != null && this.left.value == value)
|| (this.right != null && this.right.value == value)){
return this;
}else if(this.left != null && value < this.value){
return this.left.searchParent(value);
//如果返回的不是当前的结点,那就进行说明返回的是左子结点,或者是右子节点,
//故而应当是左子节点调用,或者是右子节点调用
}else if(this.right != null && value >= this.value){
return this.right.searchParent(value);
}else {
return null;
}
}
删除target Node的左子树的最大节点,或者是右子树的最小节点
/**
* 找到当前子树的最小值,同时还要删除该结点
* @param node node传入的结点(为左二叉排序树的根节点)
* @return 返回以Node为根节点的二叉排序树的最小结点Z
* 个人认为:返回最小节点,然后在删除
*/
public Node delRightTreeMin(Node node){
Node target = node;
while (target.left != null){
target = target.left;
}
Node temp = target;
//退出循环的target指向最小节点
delNode(target.value);
return target;
//找到了最小的值,那就返回该节点
}
class BestSearchTree
//查找要删除节点
public Node search(int value){
if (root == null){
return null;
}else{
return root.search(value);
}
}
//查找要删除节点的父节点
public Node searchParent(int value){
if(root == null){
return null;
}else{
return root.searchParent(value);
}
}
第二部分 根据情况进行分类删除
public void delNode(int value){
if (root == null){
return ;
}else{
//1. 需求先去找到待删除的节点 targetNode
Node targetNode = search(value);
//2. 如果没有找到要删除的结点
if (targetNode == null){
return;
}
//情况一,没有父节点,根节点就是要找的点
if ((root.left == null && root.right == null) && root == targetNode){
root = null;
return;
}
if (parent.left != null && parent.left == targetNode){
parent.left = null;
}else if(parent.right != null && parent.right == targetNode){
parent.right = null;
}
}else if(targetNode.left != null && targetNode.right != null){
Node minNode = delRightTreeMin(targetNode.right);
if (parent.left != null && parent.left == targetNode){
parent.left = minNode;
}else if(parent.right != null && parent.right == targetNode){
parent.right = minNode;
}
//在父节点的层面上进行删除,
minNode.left = targetNode.left;
minNode.right = targetNode.right;
//在子节点层面上的操作
}else{
//情况四:删除只有一棵子树的特点
if (targetNode.right != null){
//仅有左子树,右子树为空
if ( parent.left == targetNode){
parent.left = targetNode.right;
}
if ( parent.right == targetNode){
parent.right = targetNode.right;
}
}else{
if ( parent.left == targetNode){
parent.left = targetNode.left;
}
if (parent.right == targetNode){
parent.right = targetNode.left;
}
}
}
}
}
分析与总结
- 技巧:双向查找,同时查找待删除结点和待删除结点的父节点,更加便于进行删除操作
- 在顺序二叉树中,删除双子节点的非叶子节点,要用左子树的最大值,或者是右子树的最小值来代替,找到对应代替的值,删除,然后代替待删除结点targetNode
- 对于情况较复杂的判定条件,直接用else来囊括,而不是用if()具体判定条件
- 思维导图