二叉排序树(BST)

二叉排序树(BST)

题目引入
  1. 需求:对数列{7,3,10,12,1,5,9}进行高效的查询和添加。
  • 分析:
    • 使用数组:数组未排序,优点直接在尾部添加,速度快,查找速度慢:数组已经排序,使用二分查找,速度较快,但是添加元素,中间插入,数组会整体后移,速度慢。
    • 使用链式存储 — 链表:添加和删除节点的速度快,但是查找速度慢
    • 使用二叉排序树:检索速度快,查找速度快,同时比那与添加和修改。
二叉排序树的介绍
  1. 二叉排序树:BST(Binary Sort()Search Tree),对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点比当前的值大。(左小右大)
  2. 特别的说明:如果擦加入的值与某点相同,就放在左子结点,确保不出现两个相同节点在同一层,互为左右节点。
添加节点—代码实现:

class BinarySortTree

public void add(Node node) {
        if (root == null) {
            root = node;
        } else {
            root.add(node);
        }
    }

class Node

public void add(Node node){
        if (node == null){
            return;
        }
        if(node.value < this.value){
            if (this.left == null){
                this.left = node;
            }else{
                this.left.add(node);
            }
        }else{
            if (this.right == null){
                this.right = node;
            }else{
                this.right.add(node);
            }
        }
    }

总结与分析:

  1. 一个方法操作对象除了有形参列表,还有调用方法的对象,所以,在处理添加方法时,没有必要再增加一个形参对象root,直接操作当前调用方法的this。
  2. 在调用左右各子节点的成员变量时,必须要判定左右各子结点是否为空,在进行判定。
删除节点—代码实现:
思路分析
  1. 三种情况:
    • 删除叶子节点
    • 删除只有一个子树的结点
    • 删除有两个子树的结点
  2. 思路分析:
    1. 删除叶子节点

      1. 找到要删除的结点targetNode的父节点parent,有以下两种情况
        • 没有父节点,根节点
        • 有父节点,非根节点
      2. 确定targetNode是parent的左子节点还是右子节点
        • 左子节点:parent.left = null
        • 右子节点:parent.right = null
    2. 删除有一棵子树的结点

      1. 找到targetNode的父节点parent
      2. 确定targetNode是父节点的左子节点还是右子节点,和targetNode的子节点是targetNode的左子节点,还是右子节点;
        • targetNode是parent的左子节点,targetNode仅有左子树,parent.left = targetNode.left;
        • targetNode是parent的左子节点,targetNode仅有右子树,parent.left = targetNode.right:
        • targetNode是parent的右子节点,targetNode仅有左子树,parent.right = targetNode.left;
        • targetNode是parent的右子节点,targetNode仅有右子树,parent.right = targetNode.right;
    3. 删除的目标节点TargetNode右两个子树

      • 找到待删除结点TargetNode的父节点parent
      • 确定待删除结点TargetNode是parent的左节点还是右节点
      • TargetNode是parent的左节点,从TargetNode左子树选出最大的结点取代TargetNode,或者是从右子树找出最小的结点,取代TargetNode结点
      • TargetNode是parent的右节点,从TargetNode的左子树选出最大的结点取代TargetNode,并删除;或者从TargetNode的右子树选出最小结点取代TargetNode结点。
代码实现
  1. 找到待删除结点的父节点
    class Node:查找待删除结点的对应结点
public Node search(int value){
        if (this == null){
            return null;
        }
        if (value == this.value){
            return this;
        }else if(value < this.value){
            //如果查找的值小于当前节点的值,那就向左进行递归
            //还有一个问题:不知道但前指针存不存在,有可能为零
            if (this.left == null){
                return null;
            }
            return this.left.search(value);
        }else{
            //如果当前的值大于当前节点的值,那就向右进行递归
            //问题:不知道右子节点存不存在
            if (this.right == null){
                return null;
            }
            return this.right.search(value);
        }
    }
    //查找待删除结点的父节点

查找待删除结点的父节点

/**
 *
 * @param value 需要查找的节点值
 * @return  返回的是要删除的节点的父节点,如果没有就返回null
 */
public Node searchParent(int value){
    //如果当前结点就是需要返回的父节点,说明子节点就是需要查找的结点
    if ((this.left != null && this.left.value == value)
            || (this.right != null && this.right.value == value)){
        return this;
    }else if(this.left != null && value < this.value){
        return this.left.searchParent(value);
        //如果返回的不是当前的结点,那就进行说明返回的是左子结点,或者是右子节点,
        //故而应当是左子节点调用,或者是右子节点调用
    }else if(this.right != null && value >= this.value){
        return this.right.searchParent(value);
    }else {
        return null;
    }
}

删除target Node的左子树的最大节点,或者是右子树的最小节点

/**
     * 找到当前子树的最小值,同时还要删除该结点
     * @param node node传入的结点(为左二叉排序树的根节点)
     * @return 返回以Node为根节点的二叉排序树的最小结点Z
     * 个人认为:返回最小节点,然后在删除
     */
    public Node delRightTreeMin(Node node){
        Node target = node;
        while (target.left != null){
            target = target.left;
        }
        Node temp = target;
        //退出循环的target指向最小节点
        delNode(target.value);
        return target;
        //找到了最小的值,那就返回该节点
    }

class BestSearchTree

//查找要删除节点
    public Node search(int value){
        if (root == null){
            return null;
        }else{
            return root.search(value);
        }
    }
    //查找要删除节点的父节点
    public Node searchParent(int value){
        if(root == null){
            return null;
        }else{
            return root.searchParent(value);
        }
    }

第二部分 根据情况进行分类删除

public void delNode(int value){
        if (root == null){
            return ;
        }else{
            //1. 需求先去找到待删除的节点 targetNode
            Node targetNode = search(value);
            //2. 如果没有找到要删除的结点
            if (targetNode == null){
                return;
            }
            //情况一,没有父节点,根节点就是要找的点
            if ((root.left == null && root.right == null) && root == targetNode){
                root = null;
                return;
            }
                if (parent.left != null && parent.left == targetNode){
                    parent.left = null;
                }else if(parent.right != null && parent.right == targetNode){
                    parent.right = null;
                }
            }else if(targetNode.left != null && targetNode.right != null){
                Node minNode = delRightTreeMin(targetNode.right);
                if (parent.left != null && parent.left == targetNode){
                    parent.left = minNode;
                }else if(parent.right != null && parent.right == targetNode){
                    parent.right = minNode;
                }
                //在父节点的层面上进行删除,
                minNode.left = targetNode.left;
                minNode.right = targetNode.right;
                //在子节点层面上的操作
          }else{
                //情况四:删除只有一棵子树的特点
                if (targetNode.right != null){
                    //仅有左子树,右子树为空
                    if ( parent.left == targetNode){
                        parent.left = targetNode.right;
                    }
                    if ( parent.right == targetNode){
                        parent.right = targetNode.right;
                    }
                }else{
                    if ( parent.left == targetNode){
                        parent.left = targetNode.left;
                    }
                    if (parent.right == targetNode){
                        parent.right = targetNode.left;
                    }
                }
            }

        }
    }
分析与总结
  1. 技巧:双向查找,同时查找待删除结点和待删除结点的父节点,更加便于进行删除操作
  2. 在顺序二叉树中,删除双子节点的非叶子节点,要用左子树的最大值,或者是右子树的最小值来代替,找到对应代替的值,删除,然后代替待删除结点targetNode
  3. 对于情况较复杂的判定条件,直接用else来囊括,而不是用if()具体判定条件
  4. 思维导图
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值