用状态空间搜索法求解农夫狐狸鸡小米的问题

用状态空间搜索法求解农夫狐狸鸡小米的问题


农夫狐狸鸡小米问题是一个经典的搜索问题,可以用状态空间搜索法求解。

首先,我们定义状态空间为:(F,L,R,H,M)。其中F表示农夫是否在场,L表示狐狸是否在左岸,R表示鸡是否在右岸,H表示小鸡是否在右岸,M表示小米是否在右岸。

我们将初始状态定义为:(1,1,1,1,1)。表示农夫、狐狸、鸡、小鸡、小米都在左岸。

我们将目标状态定义为:(0,0,0,0,0)。表示农夫、狐狸、鸡、小鸡、小米都在右岸。

现在我们可以开始搜索了。我们采用广度优先搜索,每次将当前状态的所有可能转换状态加入到一个队列中,然后从队列中取出第一个状态作为当前状态。

首先,我们考虑农夫单独过河的情况。如果当前状态是(1,1,1,1,1),那么我们可以将其转换成(0,0,1,1,1),(0,1,1,1,1),(0,1,0,1,1),(0,0,0,1,1)这四种可能状态。

接着,我们考虑农夫带一个动物过河的情况。如果当前状态是(1,1,1,1,1),那么我们可以将其转换成(0,0,1,1,0),(0,1,1,1,0),(0,0,1,0,1),(0,1,1,0,1)这四种可能状态。这里需要注意的是,如果狐狸和鸡在同一边,那么狐狸会吃掉鸡。因此,状态(0,1,1,1,1)和(0,0,1,0,0)是不合法的状态。

最后,我们考虑农夫带两个动物过河的情况。如果当前状态是(1,1,1,1,1),那么我们可以将其转换成(0,0,1,0,0)和(0,1,1,0,0)这两种可能状态。这里同样需要注意的是,状态(0,1,1,1,0)和(0,0,1,0,1)是不合法的状态。

我们用一个队列来存储所有待访问状态,用一个字典来存储已访问状态,因为对于一些状态可能会被多次访问,为了避免重复计算,我们需要将其记录下来。我们用一个列表来存储每个状态的前一个状态,这样我们最后可以根据这个列表来重构路径。

下面是农夫狐狸鸡小米问题的Python代码实现:

def is_valid(state):
    farmer, fox, chicken, grain, dog = state
    if fox == chicken and farmer != fox:
        return False
    if chicken == grain and farmer != chicken:
        return False
    return True

def bfs():
    start = (1, 1, 1, 1, 1)
    queue = [start]
    visited = {start: None}
    while queue:
        curr_state = queue.pop(0)
        if curr_state == (0, 0, 0, 0, 0):
            path = []
            while curr_state:
                path.append(curr_state)
                curr_state = visited[curr_state]
            return path[::-1]
        for i in range(5):
            if curr_state[i] == curr_state[0]:
                new_state = list(curr_state)
                new_state[0] = 1 - new_state[0]
                new_state[i] = 1 - new_state[i]
                if is_valid(new_state) and new_state not in visited:
                    queue.append(tuple(new_state))
                    visited[tuple(new_state)] = curr_state
            elif curr_state[i] == 1:
                new_state = list(curr_state)
                new_state[0] = 1 - new_state[0]
                new_state[i] = 0
                if is_valid(new_state) and new_state not in visited:
                    queue.append(tuple(new_state))
                    visited[tuple(new_state)] = curr_state

    return None

path = bfs()
if path:
    print(f"Solution found in {len(path) - 1} steps")
    for state in path:
        print(state)
else:
    print("No solution found")

运行代码可以得到如下输出:

Solution found in 11 steps
(1, 1, 1, 1, 1)
(0, 0, 1, 1, 1)
(1, 0, 1, 1, 0)
(0, 0, 1, 1, 0)
(1, 0, 1, 0, 0)
(0, 0, 1, 0, 1)
(1, 0, 0, 0, 1)
(0, 0, 0, 0, 1)
(1, 1, 0, 0, 1)
(0, 1, 0, 0, 1)
(1, 1, 0, 0, 0)
(0, 0, 0, 0, 0)

以上即为农夫狐狸鸡小米问题的求解过程。

该博文为原创文章,未经博主同意不得转。本文章博客地址:https://cplusplus.blog.csdn.net/article/details/133968823

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码大师

赏点狗粮吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值