CUDA:实现使用批量的CUBLAS的API提高程序性能(附完整源码)

本文提供了一个使用CUDA和CUBLAS库加速矩阵乘法的示例,详细介绍了如何分配内存,初始化CUBLAS句柄,调用cublasSgemm执行操作,并验证结果。通过这个过程,可以显著提高程序运行效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CUDA:实现使用批量的CUBLAS的API提高程序性能

以下是一个使用CUDA实现矩阵乘法,并利用CUBLAS库提高程序性能的示例代码:

#include <iostream>
#include <cuda_runtime_api.h>
#include <cublas_v2.h>

void printMatrix(float* matrix, int rows, int cols) {
    for (int i = 0; i < rows; ++i) {
        for (int j = 0; j < cols; ++j) {
            std::cout << matrix[i * cols + j] << " ";
        }
        std::cout << std::endl;
    }
}

int main() {
    const int m = 1024;
    const int n = 1024;
    const int k = 1024;
    const int size_A = m * k;
    const int size_B = k * n;
    const int size_C = m * n;

    float* h_A = new float[size_A];
    float* h_B = new float[size_B];
    float* h_C = new float[size_C];

    // Initialize input matrices
    for (int i = 0; i < size_A; ++i) {
        h
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码大师

赏点狗粮吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值