CUDA:实现使用CUSPARSE和CUBLAS对有限的对称和非对称线性系统的稳定双共轭梯度(附完整源码)

本文提供了一个使用CUDA、CUSPARSE和CUBLAS解决对称和非对称线性系统的BiCGStab算法的完整示例代码。通过定义稀疏矩阵、右-hand-side向量和初始解,将数据复制到设备,初始化库句柄,执行迭代更新解向量和残差,最终将解返回主机。此原创博客详细介绍了实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CUDA:实现使用CUSPARSE和CUBLAS对有限的对称和非对称线性系统的稳定双共轭梯度

以下是一个使用 CUDA、CUSPARSE 和 CUBLAS 实现稳定双共轭梯度方法(BiCGStab)求解对称和非对称线性系统的示例代码:

#include <iostream>
#include <cuda_runtime_api.h>
#include <cusparse.h>
#include <cublas_v2.h>

void printVector(float* vector, int size) {
    for (int i = 0; i < size; ++i) {
        std::cout << vector[i] << " ";
    }
    std::cout << std::endl;
}

int main() {
    const int n = 3;
    const int nnz = 6;

    // Define sparse matrix
    float h_values[nnz] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0};
    int h_rowOffsets[n + 1] = {0, 2, 4, 6};
    int h_colIndices[nnz] = {0, 2, 1, 2, 0, 1};

    // Define right-hand side vector and initial guess
    float h_b[n] = {1.0, 2.0, 3.0};
    float h_x[n] = {0.0, 0.0, 0.0};

    // Allocate device memory
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码大师

赏点狗粮吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值