CUDA:实现使用统一内存和CUBLAS and CUSPARSE库实现共轭梯度计算(附完整源码)

本文提供了一个使用CUDA的统一内存、CUBLAS和CUSPARSE库实现共轭梯度法的示例。通过cudaMallocManaged分配统一内存,简化了设备和主机间的数据交互,避免了手动数据复制,CUDA运行时自动管理内存迁移。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CUDA:实现使用统一内存和CUBLAS and CUSPARSE库实现共轭梯度计算

以下是一个使用统一内存、CUBLAS 和 CUSPARSE 库实现共轭梯度法(Conjugate Gradient)计算的示例代码:

#include <iostream>
#include <cuda_runtime.h>
#include <cusparse_v2.h>
#include <cublas_v2.h>

int main() {
    const int N = 4; // Size of the matrix

    // Define the matrix A in CSR format (row offsets, column indices, values)
    int rowOffsets[N+1] = {0, 2, 4, 6, 8};
    int colIndices[8] = {0, 1, 1, 2, 2, 3, 3, 4};
    float values[8] = {4, -1, 2, -1, 4, -1, 2, -1};

    // Define the right-hand side vector b
    float b[N] = {5, 0, 10, 15};

    // Allocate managed memory for matrix A, vector x, vector b, and temporary vectors
    float *d_values, *d_x, *d_b, *d_r, *d_p, *d_Ap;
    cudaMallocManaged(&d_values, 8 * sizeof(float));
    cudaMallocManaged(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码大师

赏点狗粮吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值