CUDA:实现使用统一内存和CUBLAS and CUSPARSE库实现共轭梯度计算
以下是一个使用统一内存、CUBLAS 和 CUSPARSE 库实现共轭梯度法(Conjugate Gradient)计算的示例代码:
#include <iostream>
#include <cuda_runtime.h>
#include <cusparse_v2.h>
#include <cublas_v2.h>
int main() {
const int N = 4; // Size of the matrix
// Define the matrix A in CSR format (row offsets, column indices, values)
int rowOffsets[N+1] = {0, 2, 4, 6, 8};
int colIndices[8] = {0, 1, 1, 2, 2, 3, 3, 4};
float values[8] = {4, -1, 2, -1, 4, -1, 2, -1};
// Define the right-hand side vector b
float b[N] = {5, 0, 10, 15};
// Allocate managed memory for matrix A, vector x, vector b, and temporary vectors
float *d_values, *d_x, *d_b, *d_r, *d_p, *d_Ap;
cudaMallocManaged(&d_values, 8 * sizeof(float));
cudaMallocManaged(