
CS255 Programming Project 2

Programming Project 2

• Due: Wednesday March 14th (11:59pm)
– Can use extension days

• Can work in pairs
– One solution per pair

• Test and submit on Leland machines

Overview

• Implement a simple Man In The Middle
(MITM) attack on SSL

• Use Java’s networking, SSL and
Certificate implementations
– No need for low level packet manipulation

• Also implement a password based
authentication system for the MITM server
– Allows hacker to issue commands to server

Overview

• Normal SSL
– SSL encrypted data routed like normal TCP/IP

data over the internet

Internet

SSL Web
Server

Proxy Server

• Browser connects to proxy

• Proxy connects to web server and
forwards between the two

Internet

SSL Web
Server

Man in the Middle

• Instead of forwarding encrypted data between the
two hosts, our proxy will set up two DIFFERENT
SSL connections between the two.

• Proxy<->Remote Server
– Sets up a normal SSL client connection to requested

remote site
• Proxy<->Browser

– Sets up a SSL server connection to the browser,
using its own certificate, generated as a copy of the
remote host’s cert

• If the browser accepts this fake cert, the proxy has
access to the data in the clear!

What is provided?

• Basic Proxy Server setup
– Parses CONNECT request and sets up a

connection between client and remote server

• Basic Admin Server/Client
– Server listens for connections on a PLAIN

socket and parses out
username/password/command that the client
sends

Security Features

• Secure connection between admin client
and proxy server using SSL

• Password based authentication for client
– Secure storage of password file
– Passwords stored hashed using public and

private salt

• Extra Credit: Challenge / Response
authentication
– This is IN ADDITION TO password

authentication

Proxy Server

• Already listens for the browser CONNECT
request and sets up the needed SSL
connections

• You need to
– Understand the connections being made
– Obtain the remote server cert from the remote

SSL conn
– Copy the relevant fields and sign the forged cert

using your CA cert (from your keystore) (use
IAIK)

– Modify the code creating the client SSL conn to
use the newly forged cert

Signing Certificate

• Build a self signed cert for the proxy server
using keytool
– keytool –genkey –keyalg RSA
– Store this in a JKS keystore for use by your

proxy server
– Use it for signing your programmatically

generated certs
– You pretend to be a CA e.g. Verisign

• Submit a keystore with your project

Generating Certs “On the Fly”

• Not easy to generate certs
programmatically using standard Java libs

• Use the IAIK-JCE library
– iaik.x509.X509Certificate

iaik.x509.X509Certificate

• To convert from a java cert:
– new X509Certficate(javaCert.getEncoded());

• Signing
– cert.sign(

AlgorithmID.sha256withRSAEncryption,
issuerPk);

• See iaik.asn1.structures.Name
– For extracting info (e.g. common name) from

the cert’s DN (cert.getSubjectDN())

Managing Certs and SSL
Sockets

• Use the KeyStore class for
– Loading certs from file (e.g. your CA cert)
– Storing programmatically generated certs

• Use SSLContext class for setting up certs to
be used with an SSLServerSocket
– Create a cert
– Load into new KeyStore
– Init a KeyFactoryManager with new KeyStore
– Init SSLContext with new KeyFactoryManager

and provided “TrustEveryone” TrustManager
• Use SSLContext for creating

SSLSocketFactories

Admin Server

• Already listens for client connections and
parses the data sent, using plain sockets

• You need to
– Modify the code to use SSL sockets (see the

proxy server code for examples)
– Implement authentication for the transmitted

username and password
– Implement the required admin commands

• Shutdown – the proxy server to stops accepting
connections and exit

• Stats – the proxy server returns a summary of the
number of connections it has processed. Add code to
record these

Password Authentication

• Proxy server listens for SSL connections
from admin client too

• On connection client transmits a username
and password

• Server verifies these from its local
password file, and executes command if
the client is authenticated

Password File

• Need to store a file containing usernames, salts, and
hashed passwords

– Use BOTH public and secret salts (AKA pepper)

• Should be stored encrypted/MACed

– Similar to how keyfile is stored in project 1

– Can use built in CTR mode

Username Salt Password

ibaker S H(Pwd||S||P)

singuva … …

dabo

…

Password File Utility

• You need to add a utility for creating these
password files

• Simple method:
– Make a class to take a file with a list of

usernames and passwords and convert it to a
password file

Configuring Mozilla

Possible Problems

• You should be able to start up the proxy
server and connect to it “out of the box”

• If you are having problems
– Is someone else using the port? (default 8001)

• Try a different port on the command line

– Firewall problems?
• Try opening the needed ports 8001/8002 (or whatever)

– Try running your browser on the same machine
and setting the proxy as localhost

– We can’t debug your local network setup

Grading

• Security comes first
– Design choices
– Correctness of the implementation

• Did you implement all required parts?
• Secondary

– Cosmetics
– Coding style
– Efficiency

Submitting

• README file
– Names, student IDs
– Describe your design choices
– How to run your system (e.g. create

passwords)
– Answer to discussion question

• Your sources
• A sample of data recorded from your proxy
• Use /usr/class/cs255/bin/submit from a

Leland machine

Stuck?

• Use the newsgroup (su.class.cs255)
– Best way to have your questions answered

quickly

• TAs cannot:
– Debug your code

– Troubleshoot your local Java installation

– Troubleshoot your local network

