Yolov8小目标检测(5):SEAM注意力机制,提升遮挡小目标检测性能

本文介绍了如何利用SEAM和MultiSEAM注意力机制改进YOLOv8,以解决红外弱小目标检测中的遮挡问题。通过这些机制,[email protected]的性能从0.755提升到0.785。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 💡💡💡本文改进:SEAM注意力机制,较好的解决了小目标中遮挡问题;

SEAM |   亲测在红外弱小目标检测涨点明显,[email protected] 从0.755提升至0.785

💡💡💡Yolo小目标检测,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,带你轻松实现小目标检测涨点

💡💡💡重点:通过本专栏的阅读,后续你可以结合自己的小目标检测数据集,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现小目标涨点和创新!!!

专栏介绍:

✨✨✨解决小目标检测难点并提升小目标检测性能;

🚀🚀🚀小目标、遮挡物性能提升和创新;

💡💡💡 工业界小目标检测性能提升和部署可行性;

🍉🍉🍉持续更新中,定期更新不同数据集涨点情况;

目录

1. 红外弱小目标数据集

2.遮挡物检测简介 

2.1 Separated and Enhancement Attention Module (SEAM)

 2.2 MultiSEAM

2.3 遮挡感知排斥损失

2.4YoloV8加入  SEAM、MultiSEAM注意力机制

2.5 SEAM、MultiSEAM加入加入modules.py中:

 2.6  SEAM、MultiSEAM加注册tasks.py中:

2.7 SEAM、MultiSEAM修改对应yaml

2.7.1  修改对应yolov8_SEAM.yaml

2.7.2&nbs

### 如何在 YOLOv8 中实现小物体检测并加入注意力机制 #### 小目标检测模块的添加 为了增强 YOLOv8 对于小目标检测能力,在模型架构中引入专门的小目标检测头是一个有效的策略。通过增加额外的输出分支来专注于处理较小尺寸的目标,能够显著提高对于细粒度特征的学习效果[^2]。 ```python class SmallObjectDetectionHead(nn.Module): def __init__(self, input_channels=256, num_classes=80): super(SmallObjectDetectionHead, self).__init__() self.conv1 = nn.Conv2d(input_channels, 128, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(128) self.relu = nn.ReLU(inplace=True) self.output_layer = nn.Conv2d(128, (num_classes + 5) * 3, kernel_size=1) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.output_layer(out) return out ``` 此代码片段展示了如何定义一个新的卷积层作为小型对象检测头部的一部分。该头部接收来自骨干网的最后一层特征图,并对其进行进一步加工以适应更精细尺度上的预测需求。 #### 集成 SEAM 注意力机制 SEAM(Spatial Enhancement and Attention Module)是一种空间增强与注意模块,特别适用于改善被部分遮挡或重叠情况下的目标识别性能。它通过对输入特征图施加自适应权重分配的方式突出显示重要区域的信息[^3]。 ```python import torch.nn.functional as F def seam_attention_module(features): batch_size, channel_num, height, width = features.size() # 计算通道间关系矩阵 query = F.adaptive_avg_pool2d(features, output_size=(1, 1)).view(batch_size, channel_num, -1).permute(0, 2, 1) key = F.max_pool2d(features, kernel_size=(height, width), stride=None).view(batch_size, channel_num, -1) energy = torch.bmm(query, key) attention = F.softmax(energy, dim=-1) value = features.view(batch_size, channel_num, -1) weighted_sum = torch.bmm(value, attention.permute(0, 2, 1)) se_features = weighted_sum.view_as(features) enhanced_output = features + se_features return enhanced_output ``` 上述函数实现了 SEAM 的核心逻辑——即基于查询-键值对之间的相似性计算得到的空间位置敏感型权值分布,并将其应用于原始特征表示上完成最终输出。 将这两个组件结合起来,则可以在不改变原有框架结构的基础上极大地提升 YOLOv8 处理复杂场景的能力,特别是在面对诸如自动驾驶、安防监控等人机交互密集的应用场合时表现出色[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值