YOLOv10涨点改进:轻量化卷积魔改 | 动态卷积DynamicConv ,CVPR2024 ParameterNet,低计算量小模型也能从视觉大规模预训练中获益

本文探讨了YOLOv10的改进,引入了DynamicConv和ParameterNet,旨在在不大幅增加FLOPs的情况下提高低计算量模型的性能。通过动态卷积,模型在多个数据集上表现出色,如YOLOv10n-DynamicConv和YOLOv10n-DynamicBnAct。同时,文章详述了如何在YOLOv10中应用这些改进,提供源码和定制服务,适用于目标检测、分割、姿态估计等多个任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡💡💡问题点:大规模视觉预训练显著提高了大型视觉模型的性能即现有的低FLOPs模型不能从大规模的预训练中获益

 💡💡💡解决对策:ParameterNet,旨在增加大规模视觉预训练模型中的参数数量,同时最小化FLOPs的增加,利用动态卷积将额外的参数合并到网络中。

💡💡💡动态卷积引入到YOLOv10:1) DynamicConv;2)DynamicConv+Bn+Act;

使用方法:直接代替YOLOv10中的卷积;

 💡💡💡在多个数据集上涨点的前提下,原始8.4 GFLOPs降低至7.8 GFLOPs,具体实验性能如下表

YOLOv10n summary: 385 layers, 2709380 parameters, 2709364 gradients, 8.4 GFLOPs
YOLOv10n-DynamicConv summary: 395 layers, 2889552 parameters, 2889536 gradients, 7.8 GFLOPs
YOLOv10n-DynamicBnAct summary: 404 layers,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值