💡💡💡问题点:大规模视觉预训练显著提高了大型视觉模型的性能,即现有的低FLOPs模型不能从大规模的预训练中获益
💡💡💡解决对策:ParameterNet,旨在增加大规模视觉预训练模型中的参数数量,同时最小化FLOPs的增加,利用动态卷积将额外的参数合并到网络中。
💡💡💡动态卷积引入到YOLOv10:1) DynamicConv;2)DynamicConv+Bn+Act;
使用方法:直接代替YOLOv10中的卷积;
💡💡💡在多个数据集上涨点的前提下,原始8.4 GFLOPs降低至7.8 GFLOPs,具体实验性能如下表
YOLOv10n summary: 385 layers, 2709380 parameters, 2709364 gradients, 8.4 GFLOPs
YOLOv10n-DynamicConv summary: 395 layers, 2889552 parameters, 2889536 gradients, 7.8 GFLOPs
YOLOv10n-DynamicBnAct summary: 404 layers,