【力扣】338. 比特位计数

本文介绍了一种高效的方法,通过状态转移方程和位运算,实现在线性时间复杂度O(n)内计算给定整数n的二进制表示中1的个数,无需使用内置函数,适用于编程挑战和进阶算法设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
给你一个整数 n ,对于 0 <= i <= n 中的每个 i ,计算其二进制表示中 1 的个数 ,返回一个长度为 n + 1 的数组 ans 作为答案。

示例 1:

输入:n = 2
输出:[0,1,1]
解释:
0 --> 0
1 --> 1
2 --> 10

示例 2:

输入:n = 5
输出:[0,1,1,2,1,2]
解释:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101

提示:

0 <= n <= 105

进阶:

很容易就能实现时间复杂度为 O(n log n) 的解决方案,你可以在线性时间复杂度 O(n) 内用一趟扫描解决此问题吗?
你能不使用任何内置函数解决此问题吗?(如,C++ 中的 __builtin_popcount )

答案:

class Solution {
    public int[] countBits(int n) {
        /**
        对于所有的数字,只有奇数和偶数两种:

        奇数:二进制表示中,奇数一定比前面那个偶数多一个 1,因为多的就是最低位的 1。
        偶数:二进制表示中,偶数中 1 的个数一定和除以 2 之后的那个数一样多。因为最低位是 0,除以 2 就是右移一位,也就是把那个 0 抹掉而已,所以 1 的个数是不变的。
        所以我们可以得到如下的状态转移方程:

        dp[i] = dp[i-1] + 1 = dp[(i-1) / 2] + 1 = dp[i / 2] + 1 = dp[i / 2] + i % 2,当i为奇数
        dp[i] = dp[i/2],当i为偶数
        上面的方程还可进一步合并为:
        dp[i] = dp[i/2] + i % 2

        通过位运算进一步优化:

        i / 2 可以通过 i >> 1 得到;
        i % 2 可以通过 i & 1 得到;

         */
        int[] nums = new int[n + 1];
        for(int i = 1; i < n + 1; i++)
            nums[i] = nums[i / 2] + i % 2;
        return nums;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值