题目:
给你一个整数 n ,对于 0 <= i <= n 中的每个 i ,计算其二进制表示中 1 的个数 ,返回一个长度为 n + 1 的数组 ans 作为答案。
示例 1:
输入:n = 2
输出:[0,1,1]
解释:
0 --> 0
1 --> 1
2 --> 10
示例 2:
输入:n = 5
输出:[0,1,1,2,1,2]
解释:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
提示:
0 <= n <= 105
进阶:
很容易就能实现时间复杂度为 O(n log n) 的解决方案,你可以在线性时间复杂度 O(n) 内用一趟扫描解决此问题吗?
你能不使用任何内置函数解决此问题吗?(如,C++ 中的 __builtin_popcount )
答案:
class Solution {
public int[] countBits(int n) {
/**
对于所有的数字,只有奇数和偶数两种:
奇数:二进制表示中,奇数一定比前面那个偶数多一个 1,因为多的就是最低位的 1。
偶数:二进制表示中,偶数中 1 的个数一定和除以 2 之后的那个数一样多。因为最低位是 0,除以 2 就是右移一位,也就是把那个 0 抹掉而已,所以 1 的个数是不变的。
所以我们可以得到如下的状态转移方程:
dp[i] = dp[i-1] + 1 = dp[(i-1) / 2] + 1 = dp[i / 2] + 1 = dp[i / 2] + i % 2,当i为奇数
dp[i] = dp[i/2],当i为偶数
上面的方程还可进一步合并为:
dp[i] = dp[i/2] + i % 2
通过位运算进一步优化:
i / 2 可以通过 i >> 1 得到;
i % 2 可以通过 i & 1 得到;
*/
int[] nums = new int[n + 1];
for(int i = 1; i < n + 1; i++)
nums[i] = nums[i / 2] + i % 2;
return nums;
}
}