自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1924)
  • 收藏
  • 关注

原创 普通电脑也能跑AI:10个8GB内存的小型本地LLM模型推荐

本文将深入分析如何在本地硬件环境中部署先进的AI模型,并详细介绍当前最具代表性的轻量级模型解决方案。

2025-08-06 20:19:48 608

原创 使用 BAML 模糊解析改进 LangChain 知识图谱提取:成功率从25%提升到99%

本文将深入分析小型量化模型在 LangChain 提取任务中的性能限制,并展示 BAML 技术如何将知识图谱提取成功率从约 25% 显著提升至 99% 以上。

2025-08-05 19:39:41 806

原创 TorchDynamo源码解析:从字节码拦截到性能优化的设计与实践

本文深入解析PyTorch中TorchDynamo的核心架构和实现机制,通过PyTorch源码分析和关键文件导览,为开发者提供在Dynamo基础上设计扩展功能或新特性的技术指南。

2025-08-04 19:27:21 774

原创 NSA稀疏注意力深度解析:DeepSeek如何将Transformer复杂度从O(N²)降至线性,实现9倍训练加速

本文将深入分析NSA的架构设计,通过详细的示例、可视化展示和数学推导,构建对其工作机制的全面理解,从高层策略到底层硬件实现均有涉及。

2025-08-03 19:33:40 1469

原创 从零开始构建AI Agent评估体系:12种LangSmith评估方法详解

本文将深入探讨十二种不同的智能体评估技术,详细阐述每种技术的适用场景和实施方法。这些技术涵盖了从传统的预测答案与标准答案比较,到先进的实时反馈评估等多个层面,其中标准答案会随时间动态变化。

2025-08-02 20:05:36 930

原创 GSPO:Qwen让大模型强化学习训练告别崩溃,解决序列级强化学习中的稳定性问题

这是7月份的一篇论文,Qwen团队提出的群组序列策略优化算法及其在大规模语言模型强化学习训练中的技术突破

2025-08-01 18:29:29 729

原创 解决提示词痛点:用AI智能体自动检测矛盾、优化格式的完整方案

本文介绍了一个基于用户意图进行提示词优化的项目,该项目能够将预期用途与理想模型进行精确匹配。这种多智能体解决方案通过自动化处理,显著提升了提示词优化的可扩展性,有效减少了人工干预,特别适用于复杂的少样本学习场景。

2025-07-31 19:22:36 747

原创 从训练到推理:Intel Extension for PyTorch混合精度优化完整指南

Intel Extension for PyTorch作为官方扩展,专门针对Intel硬件平台进行了深度优化。该扩展不仅提供了最新的性能优化特性,还支持在Intel离散GPU上进行高效的模型训练和推理。

2025-07-30 19:50:46 975

原创 MoR vs MoE架构对比:更少参数、更快推理的大模型新选择

本文将深入分析递归混合(MoR)与专家混合(MoE)两种架构在大语言模型中的技术特性差异,探讨各自的适用场景和实现机制,并从架构设计、参数效率、推理性能等多个维度进行全面对比。

2025-07-29 18:57:13 790

原创 搜索结果太乱?5种重排序模型让你的搜索系统准确率提升40%

本文将系统性地分析重排序模型的技术原理,深入探讨从传统学习排序方法到基于Transformer架构的前沿解决方案。

2025-07-28 18:50:40 782

原创 LLM开发者必备:掌握21种分块策略让RAG应用性能翻倍

本文将系统介绍21种文本分块策略,从基础方法到高级技术,并详细分析每种策略的适用场景,以帮助开发者构建更加可靠的RAG系统。

2025-07-27 18:58:12 1040

原创 AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南

本文将深入探讨如何运用LangChain和LangGraph这两个构建AI代理、RAG应用和LLM应用的核心工具,系统性地实现上下文工程技术,以实现AI代理性能的全面优化。

2025-07-26 18:43:52 1004

原创 2025年AI智能体开发完全指南:10个GitHub顶级教程资源助你从入门到精通

本文精选了十个高质量的GitHub开源项目,涵盖从基础理论到实践应用的全方位学习路径,为AI开发者提供系统性的技术资源。

2025-07-25 16:50:18 1204

原创 DGMR压缩技术:让大规模视觉Transformer模型体积减半而性能不减

DGMR采用基于Gram-Schmidt的剪枝策略,系统性地移除MLP层中的冗余神经元,同时通过精心设计的策略确保剩余权重的多样性,从而在知识蒸馏过程中实现高效的性能恢复。

2025-07-24 21:50:00 1075

原创 Google DeepMind发布MoR架构:50%参数超越传统Transformer,推理速度提升2倍

本文深入分析MoR架构的核心技术创新,详细阐述其在令牌级推理、内存管理和训练效率方面相对于传统Transformer架构的显著优势。

2025-07-23 19:12:03 836

原创 从零构建智能对话助手:LangGraph + ReAct 实现具备记忆功能的 AI 智能体

本文将从理论基础到实践应用,系统性地介绍如何使用 LangGraph 构建具备记忆能力的 ReAct 智能体。通过详细的代码示例和技术分析,读者将深入理解智能体的工作原理,掌握从基础工作流到高级记忆系统的完整实现方法,为构建下一代智能应用奠定坚实的技术基础。

2025-07-22 19:34:05 960 1

原创 最大熵逆强化学习:理论基础、数学推导与工程实现

本文重点讨论逆强化学习(Inverse Reinforcement Learning, IRL),这是模仿学习的重要分支,其核心目标是基于演示数据学习能够最大化期望奖励的最优策略。

2025-07-21 19:38:38 721

原创 从零搭建智能搜索代理:LangGraph + 实时搜索 + PDF导出完整项目实战

本系统的核心特性包括:基于智能判断机制的自动网络搜索触发、跨多轮对话的上下文状态管理、多策略搜索机制与智能回退、透明的信息源追溯体系,以及专业级PDF文档生成功能。

2025-07-20 18:20:09 1226

原创 GQNN框架:让Python开发者轻松构建量子神经网络

为降低量子神经网络的研发门槛并提升其实用性,本文介绍一个名为GQNN(Generalized Quantum Neural Network)的Python开发框架。

2025-07-19 21:09:41 1143

原创 差分隐私机器学习:通过添加噪声让模型更安全,也更智能

本文探讨如何在模型训练过程中平衡实用性与形式化隐私保证这一关键问题。我们采用带有噪声梯度更新的模拟DP-SGD算法实现差分隐私机器学习。

2025-07-18 20:21:50 1154

原创 AI代理内存消耗过大?9种优化策略对比分析

本文将深入探讨并实现九种从基础到高级的内存优化技术,涵盖从简单的顺序存储方法到复杂的类操作系统内存管理策略。通过系统性的代码实现和性能评估,我们将分析每种技术的适用场景、优势特点以及潜在限制。

2025-07-17 19:12:39 1469

原创 SingLoRA:单矩阵架构减半参数量,让大模型微调更稳定高效

SingLoRA作为一种创新的低秩适应方法,通过摒弃传统的双矩阵架构,采用单矩阵对称更新策略,在简化模型结构的同时显著提升了训练稳定性和参数效率。

2025-07-16 15:52:14 895

原创 告别低效代码:用对这10个Pandas方法让数据分析效率翻倍

本文将介绍 10 个在数据处理中至关重要的 Pandas 技术模式。这些模式能够显著减少调试时间,提升代码的可维护性,并构建更加清晰的数据处理流水线。

2025-07-15 16:03:27 1044

原创 让大语言模型在不知道答案时拒绝回答:KnowOrNot框架防止AI幻觉

KnowOrNot开源框架。该框架通过创建可保证的"知识库外"测试场景,评估AI系统是否能够正确识别其知识边界并在信息不足时采取适当的拒绝回答策略。

2025-07-14 17:31:51 642

原创 贝叶斯状态空间神经网络:融合概率推理和状态空间实现高精度预测和可解释性

本文将BSSNN扩展至反向推理任务,即预测X∣y,这种设计使得模型不仅能够预测结果,还能够探索特定结果对应的输入特征组合。在二元分类任务中,这种反向推理能力有助于识别导致正负类结果的关键因素,从而显著提升模型的可解释性和决策支持能力。

2025-07-13 11:01:16 3860 1

原创 构建高性能LLM推理服务的完整方案:单GPU处理172个查询/秒、10万并发仅需15美元/小时

本文将通过系统性实验不同的优化技术来构建自定义LLaMA模型服务,目标是高效处理约102,000个并行查询请求,并通过对比分析确定最优解决方案。

2025-07-12 10:55:47 3927

原创 ViTAR:模糊位置编码让视觉Transformer适配任意分辨率图像

ViTAR:模糊位置编码让视觉Transformer适配任意分辨率图像

2025-07-11 13:33:00 849

原创 强化学习算法基准测试:6种算法在多智能体环境中的表现实测

本文建立了多智能体强化学习的标准化评估流程,系统比较了各种表格方法在竞争环境中的性能表现,并通过实证分析明确了表格方法的适用边界,为深入理解强化学习算法的可扩展性问题提供了重要参考。

2025-07-10 11:58:12 4499 1

原创 刚发布的最新版本怎么用?YOLOv13新手教程带你快速上手

本文将详细介绍YOLOv13的完整实现流程,涵盖数据集准备、模型训练、验证评估以及实际应用等关键环节。

2025-07-09 09:36:53 4352 1

原创 Flow Matching生成模型:从理论基础到Pytorch代码实现

本文将系统阐述Flow Matching的完整实现过程,包括数学理论推导、模型架构设计、训练流程构建以及速度场学习等关键组件。通过本文的学习,读者将掌握Flow Matching的核心原理,获得一个完整的PyTorch实现,并对生成模型在噪声调度和分数函数之外的发展方向有更深入的理解。

2025-07-08 10:28:35 4154

原创 信息检索重排序技术深度解析:Cross-Encoders、ColBERT与大语言模型方法的实践对比

本文将深入分析三种主流的重排序技术:Cross-Encoders(交叉编码器)、ColBERT以及基于大语言模型的重排序器,并详细阐述各方案在实际应用中的性能表现、成本考量以及适用场景。

2025-07-07 10:38:54 4053

原创 Python 3.14七大新特性总结:从t-string模板到GIL并发优化

Python 3.14已进入测试阶段,根据PEP 745发布计划,该版本已停止引入新功能,也就是说新特征就应该已经固定下来了。所以本文基于当前最新的beta 2版本,深入分析了Python 3.14中的七项核心新特性。

2025-07-06 10:25:46 4337

原创 量化交易隐藏模式识别方法:用潜在高斯混合模型识别交易机会

本文将从技术实现角度阐述LGMM相对于传统方法的优势,通过图表对比分析展示其效果,并详细说明量化分析师和技术分析师如何应用此方法优化投资决策。

2025-07-05 11:46:41 4306

原创 掌握这10个Jupyter魔法命令,让你的数据分析效率提升3倍

本文将详细介绍十个在实际数据科学项目中最为实用的魔法命令,并通过传粉者数据分析项目进行具体演示。

2025-07-04 10:04:07 4345

原创 大语言模型也可以进行图像分割:使用Gemini实现工业异物检测完整代码示例

本文将通过一个实际应用场景——工业传送带异物检测,详细介绍如何利用Gemini的图像分割能力构建完整的解决方案。

2025-07-03 10:43:54 8022

原创 CUDA性能优化实战:7个步骤让并行归约算法提升10倍效率

本文深入探讨了一个经典的并行计算算法——并行归约(Parallel Reduction)的性能优化过程,通过七个渐进式的优化步骤,展示了如何将算法性能提升至极致。

2025-07-02 10:39:47 4927

原创 Python时间序列平滑技术完全指南:6种主流方法原理与实战应用

本文将系统介绍六种广泛应用的时间序列平滑技术,从技术原理、参数配置、性能特征以及适用场景等多个维度进行深入分析。

2025-07-01 10:44:45 4583 1

原创 Python AutoML框架选型攻略:7个工具性能对比与应用指南

本文将系统介绍在实际项目中经过验证的主要Python AutoML库,分析各自的技术特点和适用场景。

2025-06-30 10:15:31 4217

原创 大数据集特征工程实践:将54万样本预测误差降低68%的技术路径与代码实现详解

本文通过实际案例演示特征工程在回归任务中的应用效果,重点分析包含数值型、分类型和时间序列特征的大规模表格数据集的处理方法。

2025-06-29 11:11:57 4173

原创 Arctic长序列训练技术:百万级Token序列的可扩展高效训练方法

Arctic长序列训练(Arctic Long Sequence Training, ALST)技术能够在4个H100节点上对Meta的Llama-8B模型进行高达1500万token序列的训练,使得长序列训练在标准GPU集群甚至单个GPU上都能实现快速、高效且易于部署的执行。

2025-06-28 10:45:02 3773 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除