[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["缺少我需要的資訊","missingTheInformationINeed","thumb-down"],["過於複雜/步驟過多","tooComplicatedTooManySteps","thumb-down"],["過時","outOfDate","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["示例/程式碼問題","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2024-11-14 (世界標準時間)。"],[[["Simpler models often generalize better to new data than complex models, even if they perform slightly worse on training data."],["Occam's Razor favors simpler explanations and models, prioritizing them over more complex ones."],["Regularization techniques help prevent overfitting by penalizing model complexity during training."],["Model training aims to minimize both loss (errors on training data) and complexity for optimal performance on new data."],["Model complexity can be quantified using functions of model weights, like L1 and L2 regularization."]]],[]]