Weibull Distribution韦布尔分布的深入详述(1)原理和公式

1 前言:

韦伯分布被经常用来对失效性(time to Failure)或者,反而言之为,可靠性,进行衡量的工具。他的目标就是构建一个失效性分析的模型,或者说构建一个失效性分析的Pattern. 失效性可用于很多领域,包括存储器元器件、机械抗疲劳、以及航空、汽车结构件。
本章介绍韦布尔分布(weibull distribution)的累计分布函数CDF\密度分布函数PDF\数学期望EDF的基本公式、参数、基本图形和推导。
在介绍公式概念的时候,把概率论里面通用的概念大多拿出来在概念小节进行了阐述。
韦伯分布还有一个重要的,特点就是他的灵活性非常好。

韦伯分布的应用场景:包括,【工业制造、研究生产过程和运输时间关系、极值理论、预测天气、可靠性和失效分析、雷达系统对接受到的杂波信号的依分布建模。拟合度无线通信技术中,相对指数衰减频道模型,Weibull衰减模型对衰减频道建模有较好的拟合度。量化寿险模型的重复索赔、预测技术变革、风速由于曲线形状与现实状况很匹配,被用来描述风速的分布。】

2 韦伯分布的累计分布函数(CDF-Cumulative Distribution Function):

【案,本章CDF就是指的 CDF of weibull 】
【CDF其实就是PDF的积分,见附件的参考定义】

2.1 双参数韦伯分布累计分布函数和推导

【Franklin案,在展示CDF公式的之前,不得不提我们的国内的某些度知识里面的公式,采用的希腊字母完全和

### Weibull分布的定义 Weibull分布是一种连续型概率分布,通常用来描述随机变量的概率密度函数。它的概率密度函数可以表示为: \[ f(x; k, \lambda) = \begin{cases} \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}e^{-(x/\lambda)^k}, & x \geq 0 \\ 0, & x < 0 \end{cases} \] 其中 \( k > 0 \) 是形状参数,\( \lambda > 0 \) 是尺度参数[^1]。 --- ### Weibull分布的主要特性 #### 形状参数的影响 形状参数 \( k \) 对于Weibull分布至关重要。当 \( k=1 \),该分布退化为指数分布;当 \( k>1 \),它表现出“浴盆曲线”的特征,即先下降再上升的趋势;而当 \( k<1 \),则呈现单调递减的行为[^2]。 #### 尺度参数的意义 尺度参数 \( \lambda \) 表示数据集的整体水平或范围大小。较大的 \( \lambda \) 值意味着更大的平均值更宽的数据跨度。 #### 灵活性 由于其两个独立参数的存在,使得Weibull分布在拟合不同类型的失效时间方面非常灵活。它可以很好地近似其他常见分布形式,比如正态分布或者对数正态分布,在某些特定条件下甚至完全一致。 --- ### Weibull分布的应用领域 #### 可靠性工程 在可靠性分析中,Weibull分布常用于评估产品的使用寿命以及预测可能发生的故障时刻。通过对实际测试得到的数据进行回归处理后选用合适的Weibull模型来估计系统的MTTF (Mean Time To Failure)[^2]。 #### 绝缘系统设计 特别是在高压电气设备的设计过程中,利用Weibull分布可以帮助工程师更好地理解量化局部放电现象的发生规律,并据此设定合理的局放起始电压(PD Inception Voltage, PDIV)阈值标准。 以下是基于Python实现的一个简单例子展示如何计算并绘制基本的Weibull PDF图形: ```python import numpy as np from scipy.stats import weibull_min import matplotlib.pyplot as plt # 参数设置 shape_param = 1.5 # Shape parameter 'k' scale_param = 2 # Scale parameter 'λ' # 创建样本空间 x_values = np.linspace(weibull_min.ppf(0.01, shape_param, scale=scale_param), weibull_min.ppf(0.99, shape_param, scale=scale_param), 100) # 计算PDF pdf_values = weibull_min.pdf(x_values, shape_param, scale=scale_param) # 绘制图像 plt.plot(x_values, pdf_values) plt.title('Weibull Distribution') plt.xlabel('X Values') plt.ylabel('Probability Density Function') plt.show() ``` 此脚本展示了如何使用`scipy.stats.weibull_min`模块生成指定参数下的Weibull分布图象。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Franklin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值