core/str/
mod.rs

1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10mod count;
11mod error;
12mod iter;
13mod traits;
14mod validations;
15
16use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
17use crate::char::{self, EscapeDebugExtArgs};
18use crate::ops::Range;
19use crate::slice::{self, SliceIndex};
20use crate::ub_checks::assert_unsafe_precondition;
21use crate::{ascii, mem};
22
23pub mod pattern;
24
25mod lossy;
26#[unstable(feature = "str_from_raw_parts", issue = "119206")]
27pub use converts::{from_raw_parts, from_raw_parts_mut};
28#[stable(feature = "rust1", since = "1.0.0")]
29pub use converts::{from_utf8, from_utf8_unchecked};
30#[stable(feature = "str_mut_extras", since = "1.20.0")]
31pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
32#[stable(feature = "rust1", since = "1.0.0")]
33pub use error::{ParseBoolError, Utf8Error};
34#[stable(feature = "encode_utf16", since = "1.8.0")]
35pub use iter::EncodeUtf16;
36#[stable(feature = "rust1", since = "1.0.0")]
37#[allow(deprecated)]
38pub use iter::LinesAny;
39#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
40pub use iter::SplitAsciiWhitespace;
41#[stable(feature = "split_inclusive", since = "1.51.0")]
42pub use iter::SplitInclusive;
43#[stable(feature = "rust1", since = "1.0.0")]
44pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
45#[stable(feature = "str_escape", since = "1.34.0")]
46pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
47#[stable(feature = "str_match_indices", since = "1.5.0")]
48pub use iter::{MatchIndices, RMatchIndices};
49use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
50#[stable(feature = "str_matches", since = "1.2.0")]
51pub use iter::{Matches, RMatches};
52#[stable(feature = "rust1", since = "1.0.0")]
53pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
54#[stable(feature = "rust1", since = "1.0.0")]
55pub use iter::{RSplitN, SplitN};
56#[stable(feature = "utf8_chunks", since = "1.79.0")]
57pub use lossy::{Utf8Chunk, Utf8Chunks};
58#[stable(feature = "rust1", since = "1.0.0")]
59pub use traits::FromStr;
60#[unstable(feature = "str_internals", issue = "none")]
61pub use validations::{next_code_point, utf8_char_width};
62
63#[inline(never)]
64#[cold]
65#[track_caller]
66#[rustc_allow_const_fn_unstable(const_eval_select)]
67#[cfg(not(feature = "panic_immediate_abort"))]
68const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
69    crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
70}
71
72#[cfg(feature = "panic_immediate_abort")]
73const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
74    slice_error_fail_ct(s, begin, end)
75}
76
77#[track_caller]
78const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
79    panic!("failed to slice string");
80}
81
82#[track_caller]
83fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
84    const MAX_DISPLAY_LENGTH: usize = 256;
85    let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
86    let s_trunc = &s[..trunc_len];
87    let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
88
89    // 1. out of bounds
90    if begin > s.len() || end > s.len() {
91        let oob_index = if begin > s.len() { begin } else { end };
92        panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
93    }
94
95    // 2. begin <= end
96    assert!(
97        begin <= end,
98        "begin <= end ({} <= {}) when slicing `{}`{}",
99        begin,
100        end,
101        s_trunc,
102        ellipsis
103    );
104
105    // 3. character boundary
106    let index = if !s.is_char_boundary(begin) { begin } else { end };
107    // find the character
108    let char_start = s.floor_char_boundary(index);
109    // `char_start` must be less than len and a char boundary
110    let ch = s[char_start..].chars().next().unwrap();
111    let char_range = char_start..char_start + ch.len_utf8();
112    panic!(
113        "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
114        index, ch, char_range, s_trunc, ellipsis
115    );
116}
117
118impl str {
119    /// Returns the length of `self`.
120    ///
121    /// This length is in bytes, not [`char`]s or graphemes. In other words,
122    /// it might not be what a human considers the length of the string.
123    ///
124    /// [`char`]: prim@char
125    ///
126    /// # Examples
127    ///
128    /// ```
129    /// let len = "foo".len();
130    /// assert_eq!(3, len);
131    ///
132    /// assert_eq!("ƒoo".len(), 4); // fancy f!
133    /// assert_eq!("ƒoo".chars().count(), 3);
134    /// ```
135    #[stable(feature = "rust1", since = "1.0.0")]
136    #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
137    #[rustc_diagnostic_item = "str_len"]
138    #[rustc_no_implicit_autorefs]
139    #[must_use]
140    #[inline]
141    pub const fn len(&self) -> usize {
142        self.as_bytes().len()
143    }
144
145    /// Returns `true` if `self` has a length of zero bytes.
146    ///
147    /// # Examples
148    ///
149    /// ```
150    /// let s = "";
151    /// assert!(s.is_empty());
152    ///
153    /// let s = "not empty";
154    /// assert!(!s.is_empty());
155    /// ```
156    #[stable(feature = "rust1", since = "1.0.0")]
157    #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
158    #[rustc_no_implicit_autorefs]
159    #[must_use]
160    #[inline]
161    pub const fn is_empty(&self) -> bool {
162        self.len() == 0
163    }
164
165    /// Converts a slice of bytes to a string slice.
166    ///
167    /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
168    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
169    /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
170    /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
171    /// UTF-8, and then does the conversion.
172    ///
173    /// [`&str`]: str
174    /// [byteslice]: prim@slice
175    ///
176    /// If you are sure that the byte slice is valid UTF-8, and you don't want to
177    /// incur the overhead of the validity check, there is an unsafe version of
178    /// this function, [`from_utf8_unchecked`], which has the same
179    /// behavior but skips the check.
180    ///
181    /// If you need a `String` instead of a `&str`, consider
182    /// [`String::from_utf8`][string].
183    ///
184    /// [string]: ../std/string/struct.String.html#method.from_utf8
185    ///
186    /// Because you can stack-allocate a `[u8; N]`, and you can take a
187    /// [`&[u8]`][byteslice] of it, this function is one way to have a
188    /// stack-allocated string. There is an example of this in the
189    /// examples section below.
190    ///
191    /// [byteslice]: slice
192    ///
193    /// # Errors
194    ///
195    /// Returns `Err` if the slice is not UTF-8 with a description as to why the
196    /// provided slice is not UTF-8.
197    ///
198    /// # Examples
199    ///
200    /// Basic usage:
201    ///
202    /// ```
203    /// // some bytes, in a vector
204    /// let sparkle_heart = vec![240, 159, 146, 150];
205    ///
206    /// // We can use the ? (try) operator to check if the bytes are valid
207    /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
208    ///
209    /// assert_eq!("💖", sparkle_heart);
210    /// # Ok::<_, std::str::Utf8Error>(())
211    /// ```
212    ///
213    /// Incorrect bytes:
214    ///
215    /// ```
216    /// // some invalid bytes, in a vector
217    /// let sparkle_heart = vec![0, 159, 146, 150];
218    ///
219    /// assert!(str::from_utf8(&sparkle_heart).is_err());
220    /// ```
221    ///
222    /// See the docs for [`Utf8Error`] for more details on the kinds of
223    /// errors that can be returned.
224    ///
225    /// A "stack allocated string":
226    ///
227    /// ```
228    /// // some bytes, in a stack-allocated array
229    /// let sparkle_heart = [240, 159, 146, 150];
230    ///
231    /// // We know these bytes are valid, so just use `unwrap()`.
232    /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
233    ///
234    /// assert_eq!("💖", sparkle_heart);
235    /// ```
236    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
237    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
238    #[rustc_diagnostic_item = "str_inherent_from_utf8"]
239    pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
240        converts::from_utf8(v)
241    }
242
243    /// Converts a mutable slice of bytes to a mutable string slice.
244    ///
245    /// # Examples
246    ///
247    /// Basic usage:
248    ///
249    /// ```
250    /// // "Hello, Rust!" as a mutable vector
251    /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
252    ///
253    /// // As we know these bytes are valid, we can use `unwrap()`
254    /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
255    ///
256    /// assert_eq!("Hello, Rust!", outstr);
257    /// ```
258    ///
259    /// Incorrect bytes:
260    ///
261    /// ```
262    /// // Some invalid bytes in a mutable vector
263    /// let mut invalid = vec![128, 223];
264    ///
265    /// assert!(str::from_utf8_mut(&mut invalid).is_err());
266    /// ```
267    /// See the docs for [`Utf8Error`] for more details on the kinds of
268    /// errors that can be returned.
269    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
270    #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
271    #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
272    pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
273        converts::from_utf8_mut(v)
274    }
275
276    /// Converts a slice of bytes to a string slice without checking
277    /// that the string contains valid UTF-8.
278    ///
279    /// See the safe version, [`from_utf8`], for more information.
280    ///
281    /// # Safety
282    ///
283    /// The bytes passed in must be valid UTF-8.
284    ///
285    /// # Examples
286    ///
287    /// Basic usage:
288    ///
289    /// ```
290    /// // some bytes, in a vector
291    /// let sparkle_heart = vec![240, 159, 146, 150];
292    ///
293    /// let sparkle_heart = unsafe {
294    ///     str::from_utf8_unchecked(&sparkle_heart)
295    /// };
296    ///
297    /// assert_eq!("💖", sparkle_heart);
298    /// ```
299    #[inline]
300    #[must_use]
301    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
302    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
303    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
304    pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
305        // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
306        unsafe { converts::from_utf8_unchecked(v) }
307    }
308
309    /// Converts a slice of bytes to a string slice without checking
310    /// that the string contains valid UTF-8; mutable version.
311    ///
312    /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
313    ///
314    /// # Examples
315    ///
316    /// Basic usage:
317    ///
318    /// ```
319    /// let mut heart = vec![240, 159, 146, 150];
320    /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
321    ///
322    /// assert_eq!("💖", heart);
323    /// ```
324    #[inline]
325    #[must_use]
326    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
327    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
328    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
329    pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
330        // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
331        unsafe { converts::from_utf8_unchecked_mut(v) }
332    }
333
334    /// Checks that `index`-th byte is the first byte in a UTF-8 code point
335    /// sequence or the end of the string.
336    ///
337    /// The start and end of the string (when `index == self.len()`) are
338    /// considered to be boundaries.
339    ///
340    /// Returns `false` if `index` is greater than `self.len()`.
341    ///
342    /// # Examples
343    ///
344    /// ```
345    /// let s = "Löwe 老虎 Léopard";
346    /// assert!(s.is_char_boundary(0));
347    /// // start of `老`
348    /// assert!(s.is_char_boundary(6));
349    /// assert!(s.is_char_boundary(s.len()));
350    ///
351    /// // second byte of `ö`
352    /// assert!(!s.is_char_boundary(2));
353    ///
354    /// // third byte of `老`
355    /// assert!(!s.is_char_boundary(8));
356    /// ```
357    #[must_use]
358    #[stable(feature = "is_char_boundary", since = "1.9.0")]
359    #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
360    #[inline]
361    pub const fn is_char_boundary(&self, index: usize) -> bool {
362        // 0 is always ok.
363        // Test for 0 explicitly so that it can optimize out the check
364        // easily and skip reading string data for that case.
365        // Note that optimizing `self.get(..index)` relies on this.
366        if index == 0 {
367            return true;
368        }
369
370        if index >= self.len() {
371            // For `true` we have two options:
372            //
373            // - index == self.len()
374            //   Empty strings are valid, so return true
375            // - index > self.len()
376            //   In this case return false
377            //
378            // The check is placed exactly here, because it improves generated
379            // code on higher opt-levels. See PR #84751 for more details.
380            index == self.len()
381        } else {
382            self.as_bytes()[index].is_utf8_char_boundary()
383        }
384    }
385
386    /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
387    ///
388    /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
389    /// exceed a given number of bytes. Note that this is done purely at the character level
390    /// and can still visually split graphemes, even though the underlying characters aren't
391    /// split. For example, the emoji 🧑‍🔬 (scientist) could be split so that the string only
392    /// includes 🧑 (person) instead.
393    ///
394    /// [`is_char_boundary(x)`]: Self::is_char_boundary
395    ///
396    /// # Examples
397    ///
398    /// ```
399    /// #![feature(round_char_boundary)]
400    /// let s = "❤️🧡💛💚💙💜";
401    /// assert_eq!(s.len(), 26);
402    /// assert!(!s.is_char_boundary(13));
403    ///
404    /// let closest = s.floor_char_boundary(13);
405    /// assert_eq!(closest, 10);
406    /// assert_eq!(&s[..closest], "❤️🧡");
407    /// ```
408    #[unstable(feature = "round_char_boundary", issue = "93743")]
409    #[inline]
410    pub fn floor_char_boundary(&self, index: usize) -> usize {
411        if index >= self.len() {
412            self.len()
413        } else {
414            let lower_bound = index.saturating_sub(3);
415            let new_index = self.as_bytes()[lower_bound..=index]
416                .iter()
417                .rposition(|b| b.is_utf8_char_boundary());
418
419            // SAFETY: we know that the character boundary will be within four bytes
420            unsafe { lower_bound + new_index.unwrap_unchecked() }
421        }
422    }
423
424    /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
425    ///
426    /// If `index` is greater than the length of the string, this returns the length of the string.
427    ///
428    /// This method is the natural complement to [`floor_char_boundary`]. See that method
429    /// for more details.
430    ///
431    /// [`floor_char_boundary`]: str::floor_char_boundary
432    /// [`is_char_boundary(x)`]: Self::is_char_boundary
433    ///
434    /// # Examples
435    ///
436    /// ```
437    /// #![feature(round_char_boundary)]
438    /// let s = "❤️🧡💛💚💙💜";
439    /// assert_eq!(s.len(), 26);
440    /// assert!(!s.is_char_boundary(13));
441    ///
442    /// let closest = s.ceil_char_boundary(13);
443    /// assert_eq!(closest, 14);
444    /// assert_eq!(&s[..closest], "❤️🧡💛");
445    /// ```
446    #[unstable(feature = "round_char_boundary", issue = "93743")]
447    #[inline]
448    pub fn ceil_char_boundary(&self, index: usize) -> usize {
449        if index > self.len() {
450            self.len()
451        } else {
452            let upper_bound = Ord::min(index + 4, self.len());
453            self.as_bytes()[index..upper_bound]
454                .iter()
455                .position(|b| b.is_utf8_char_boundary())
456                .map_or(upper_bound, |pos| pos + index)
457        }
458    }
459
460    /// Converts a string slice to a byte slice. To convert the byte slice back
461    /// into a string slice, use the [`from_utf8`] function.
462    ///
463    /// # Examples
464    ///
465    /// ```
466    /// let bytes = "bors".as_bytes();
467    /// assert_eq!(b"bors", bytes);
468    /// ```
469    #[stable(feature = "rust1", since = "1.0.0")]
470    #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
471    #[must_use]
472    #[inline(always)]
473    #[allow(unused_attributes)]
474    pub const fn as_bytes(&self) -> &[u8] {
475        // SAFETY: const sound because we transmute two types with the same layout
476        unsafe { mem::transmute(self) }
477    }
478
479    /// Converts a mutable string slice to a mutable byte slice.
480    ///
481    /// # Safety
482    ///
483    /// The caller must ensure that the content of the slice is valid UTF-8
484    /// before the borrow ends and the underlying `str` is used.
485    ///
486    /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
487    ///
488    /// # Examples
489    ///
490    /// Basic usage:
491    ///
492    /// ```
493    /// let mut s = String::from("Hello");
494    /// let bytes = unsafe { s.as_bytes_mut() };
495    ///
496    /// assert_eq!(b"Hello", bytes);
497    /// ```
498    ///
499    /// Mutability:
500    ///
501    /// ```
502    /// let mut s = String::from("🗻∈🌏");
503    ///
504    /// unsafe {
505    ///     let bytes = s.as_bytes_mut();
506    ///
507    ///     bytes[0] = 0xF0;
508    ///     bytes[1] = 0x9F;
509    ///     bytes[2] = 0x8D;
510    ///     bytes[3] = 0x94;
511    /// }
512    ///
513    /// assert_eq!("🍔∈🌏", s);
514    /// ```
515    #[stable(feature = "str_mut_extras", since = "1.20.0")]
516    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
517    #[must_use]
518    #[inline(always)]
519    pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
520        // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
521        // has the same layout as `&[u8]` (only std can make this guarantee).
522        // The pointer dereference is safe since it comes from a mutable reference which
523        // is guaranteed to be valid for writes.
524        unsafe { &mut *(self as *mut str as *mut [u8]) }
525    }
526
527    /// Converts a string slice to a raw pointer.
528    ///
529    /// As string slices are a slice of bytes, the raw pointer points to a
530    /// [`u8`]. This pointer will be pointing to the first byte of the string
531    /// slice.
532    ///
533    /// The caller must ensure that the returned pointer is never written to.
534    /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
535    ///
536    /// [`as_mut_ptr`]: str::as_mut_ptr
537    ///
538    /// # Examples
539    ///
540    /// ```
541    /// let s = "Hello";
542    /// let ptr = s.as_ptr();
543    /// ```
544    #[stable(feature = "rust1", since = "1.0.0")]
545    #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
546    #[rustc_never_returns_null_ptr]
547    #[rustc_as_ptr]
548    #[must_use]
549    #[inline(always)]
550    pub const fn as_ptr(&self) -> *const u8 {
551        self as *const str as *const u8
552    }
553
554    /// Converts a mutable string slice to a raw pointer.
555    ///
556    /// As string slices are a slice of bytes, the raw pointer points to a
557    /// [`u8`]. This pointer will be pointing to the first byte of the string
558    /// slice.
559    ///
560    /// It is your responsibility to make sure that the string slice only gets
561    /// modified in a way that it remains valid UTF-8.
562    #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
563    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
564    #[rustc_never_returns_null_ptr]
565    #[rustc_as_ptr]
566    #[must_use]
567    #[inline(always)]
568    pub const fn as_mut_ptr(&mut self) -> *mut u8 {
569        self as *mut str as *mut u8
570    }
571
572    /// Returns a subslice of `str`.
573    ///
574    /// This is the non-panicking alternative to indexing the `str`. Returns
575    /// [`None`] whenever equivalent indexing operation would panic.
576    ///
577    /// # Examples
578    ///
579    /// ```
580    /// let v = String::from("🗻∈🌏");
581    ///
582    /// assert_eq!(Some("🗻"), v.get(0..4));
583    ///
584    /// // indices not on UTF-8 sequence boundaries
585    /// assert!(v.get(1..).is_none());
586    /// assert!(v.get(..8).is_none());
587    ///
588    /// // out of bounds
589    /// assert!(v.get(..42).is_none());
590    /// ```
591    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
592    #[inline]
593    pub fn get<I: SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
594        i.get(self)
595    }
596
597    /// Returns a mutable subslice of `str`.
598    ///
599    /// This is the non-panicking alternative to indexing the `str`. Returns
600    /// [`None`] whenever equivalent indexing operation would panic.
601    ///
602    /// # Examples
603    ///
604    /// ```
605    /// let mut v = String::from("hello");
606    /// // correct length
607    /// assert!(v.get_mut(0..5).is_some());
608    /// // out of bounds
609    /// assert!(v.get_mut(..42).is_none());
610    /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
611    ///
612    /// assert_eq!("hello", v);
613    /// {
614    ///     let s = v.get_mut(0..2);
615    ///     let s = s.map(|s| {
616    ///         s.make_ascii_uppercase();
617    ///         &*s
618    ///     });
619    ///     assert_eq!(Some("HE"), s);
620    /// }
621    /// assert_eq!("HEllo", v);
622    /// ```
623    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
624    #[inline]
625    pub fn get_mut<I: SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
626        i.get_mut(self)
627    }
628
629    /// Returns an unchecked subslice of `str`.
630    ///
631    /// This is the unchecked alternative to indexing the `str`.
632    ///
633    /// # Safety
634    ///
635    /// Callers of this function are responsible that these preconditions are
636    /// satisfied:
637    ///
638    /// * The starting index must not exceed the ending index;
639    /// * Indexes must be within bounds of the original slice;
640    /// * Indexes must lie on UTF-8 sequence boundaries.
641    ///
642    /// Failing that, the returned string slice may reference invalid memory or
643    /// violate the invariants communicated by the `str` type.
644    ///
645    /// # Examples
646    ///
647    /// ```
648    /// let v = "🗻∈🌏";
649    /// unsafe {
650    ///     assert_eq!("🗻", v.get_unchecked(0..4));
651    ///     assert_eq!("∈", v.get_unchecked(4..7));
652    ///     assert_eq!("🌏", v.get_unchecked(7..11));
653    /// }
654    /// ```
655    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
656    #[inline]
657    pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
658        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
659        // the slice is dereferenceable because `self` is a safe reference.
660        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
661        unsafe { &*i.get_unchecked(self) }
662    }
663
664    /// Returns a mutable, unchecked subslice of `str`.
665    ///
666    /// This is the unchecked alternative to indexing the `str`.
667    ///
668    /// # Safety
669    ///
670    /// Callers of this function are responsible that these preconditions are
671    /// satisfied:
672    ///
673    /// * The starting index must not exceed the ending index;
674    /// * Indexes must be within bounds of the original slice;
675    /// * Indexes must lie on UTF-8 sequence boundaries.
676    ///
677    /// Failing that, the returned string slice may reference invalid memory or
678    /// violate the invariants communicated by the `str` type.
679    ///
680    /// # Examples
681    ///
682    /// ```
683    /// let mut v = String::from("🗻∈🌏");
684    /// unsafe {
685    ///     assert_eq!("🗻", v.get_unchecked_mut(0..4));
686    ///     assert_eq!("∈", v.get_unchecked_mut(4..7));
687    ///     assert_eq!("🌏", v.get_unchecked_mut(7..11));
688    /// }
689    /// ```
690    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
691    #[inline]
692    pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
693        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
694        // the slice is dereferenceable because `self` is a safe reference.
695        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
696        unsafe { &mut *i.get_unchecked_mut(self) }
697    }
698
699    /// Creates a string slice from another string slice, bypassing safety
700    /// checks.
701    ///
702    /// This is generally not recommended, use with caution! For a safe
703    /// alternative see [`str`] and [`Index`].
704    ///
705    /// [`Index`]: crate::ops::Index
706    ///
707    /// This new slice goes from `begin` to `end`, including `begin` but
708    /// excluding `end`.
709    ///
710    /// To get a mutable string slice instead, see the
711    /// [`slice_mut_unchecked`] method.
712    ///
713    /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
714    ///
715    /// # Safety
716    ///
717    /// Callers of this function are responsible that three preconditions are
718    /// satisfied:
719    ///
720    /// * `begin` must not exceed `end`.
721    /// * `begin` and `end` must be byte positions within the string slice.
722    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
723    ///
724    /// # Examples
725    ///
726    /// ```
727    /// let s = "Löwe 老虎 Léopard";
728    ///
729    /// unsafe {
730    ///     assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
731    /// }
732    ///
733    /// let s = "Hello, world!";
734    ///
735    /// unsafe {
736    ///     assert_eq!("world", s.slice_unchecked(7, 12));
737    /// }
738    /// ```
739    #[stable(feature = "rust1", since = "1.0.0")]
740    #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
741    #[must_use]
742    #[inline]
743    pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
744        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
745        // the slice is dereferenceable because `self` is a safe reference.
746        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
747        unsafe { &*(begin..end).get_unchecked(self) }
748    }
749
750    /// Creates a string slice from another string slice, bypassing safety
751    /// checks.
752    ///
753    /// This is generally not recommended, use with caution! For a safe
754    /// alternative see [`str`] and [`IndexMut`].
755    ///
756    /// [`IndexMut`]: crate::ops::IndexMut
757    ///
758    /// This new slice goes from `begin` to `end`, including `begin` but
759    /// excluding `end`.
760    ///
761    /// To get an immutable string slice instead, see the
762    /// [`slice_unchecked`] method.
763    ///
764    /// [`slice_unchecked`]: str::slice_unchecked
765    ///
766    /// # Safety
767    ///
768    /// Callers of this function are responsible that three preconditions are
769    /// satisfied:
770    ///
771    /// * `begin` must not exceed `end`.
772    /// * `begin` and `end` must be byte positions within the string slice.
773    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
774    #[stable(feature = "str_slice_mut", since = "1.5.0")]
775    #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
776    #[inline]
777    pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
778        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
779        // the slice is dereferenceable because `self` is a safe reference.
780        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
781        unsafe { &mut *(begin..end).get_unchecked_mut(self) }
782    }
783
784    /// Divides one string slice into two at an index.
785    ///
786    /// The argument, `mid`, should be a byte offset from the start of the
787    /// string. It must also be on the boundary of a UTF-8 code point.
788    ///
789    /// The two slices returned go from the start of the string slice to `mid`,
790    /// and from `mid` to the end of the string slice.
791    ///
792    /// To get mutable string slices instead, see the [`split_at_mut`]
793    /// method.
794    ///
795    /// [`split_at_mut`]: str::split_at_mut
796    ///
797    /// # Panics
798    ///
799    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
800    /// the end of the last code point of the string slice.  For a non-panicking
801    /// alternative see [`split_at_checked`](str::split_at_checked).
802    ///
803    /// # Examples
804    ///
805    /// ```
806    /// let s = "Per Martin-Löf";
807    ///
808    /// let (first, last) = s.split_at(3);
809    ///
810    /// assert_eq!("Per", first);
811    /// assert_eq!(" Martin-Löf", last);
812    /// ```
813    #[inline]
814    #[must_use]
815    #[stable(feature = "str_split_at", since = "1.4.0")]
816    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
817    pub const fn split_at(&self, mid: usize) -> (&str, &str) {
818        match self.split_at_checked(mid) {
819            None => slice_error_fail(self, 0, mid),
820            Some(pair) => pair,
821        }
822    }
823
824    /// Divides one mutable string slice into two at an index.
825    ///
826    /// The argument, `mid`, should be a byte offset from the start of the
827    /// string. It must also be on the boundary of a UTF-8 code point.
828    ///
829    /// The two slices returned go from the start of the string slice to `mid`,
830    /// and from `mid` to the end of the string slice.
831    ///
832    /// To get immutable string slices instead, see the [`split_at`] method.
833    ///
834    /// [`split_at`]: str::split_at
835    ///
836    /// # Panics
837    ///
838    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
839    /// the end of the last code point of the string slice.  For a non-panicking
840    /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
841    ///
842    /// # Examples
843    ///
844    /// ```
845    /// let mut s = "Per Martin-Löf".to_string();
846    /// {
847    ///     let (first, last) = s.split_at_mut(3);
848    ///     first.make_ascii_uppercase();
849    ///     assert_eq!("PER", first);
850    ///     assert_eq!(" Martin-Löf", last);
851    /// }
852    /// assert_eq!("PER Martin-Löf", s);
853    /// ```
854    #[inline]
855    #[must_use]
856    #[stable(feature = "str_split_at", since = "1.4.0")]
857    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
858    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
859        // is_char_boundary checks that the index is in [0, .len()]
860        if self.is_char_boundary(mid) {
861            // SAFETY: just checked that `mid` is on a char boundary.
862            unsafe { self.split_at_mut_unchecked(mid) }
863        } else {
864            slice_error_fail(self, 0, mid)
865        }
866    }
867
868    /// Divides one string slice into two at an index.
869    ///
870    /// The argument, `mid`, should be a valid byte offset from the start of the
871    /// string. It must also be on the boundary of a UTF-8 code point. The
872    /// method returns `None` if that’s not the case.
873    ///
874    /// The two slices returned go from the start of the string slice to `mid`,
875    /// and from `mid` to the end of the string slice.
876    ///
877    /// To get mutable string slices instead, see the [`split_at_mut_checked`]
878    /// method.
879    ///
880    /// [`split_at_mut_checked`]: str::split_at_mut_checked
881    ///
882    /// # Examples
883    ///
884    /// ```
885    /// let s = "Per Martin-Löf";
886    ///
887    /// let (first, last) = s.split_at_checked(3).unwrap();
888    /// assert_eq!("Per", first);
889    /// assert_eq!(" Martin-Löf", last);
890    ///
891    /// assert_eq!(None, s.split_at_checked(13));  // Inside “ö”
892    /// assert_eq!(None, s.split_at_checked(16));  // Beyond the string length
893    /// ```
894    #[inline]
895    #[must_use]
896    #[stable(feature = "split_at_checked", since = "1.80.0")]
897    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
898    pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
899        // is_char_boundary checks that the index is in [0, .len()]
900        if self.is_char_boundary(mid) {
901            // SAFETY: just checked that `mid` is on a char boundary.
902            Some(unsafe { self.split_at_unchecked(mid) })
903        } else {
904            None
905        }
906    }
907
908    /// Divides one mutable string slice into two at an index.
909    ///
910    /// The argument, `mid`, should be a valid byte offset from the start of the
911    /// string. It must also be on the boundary of a UTF-8 code point. The
912    /// method returns `None` if that’s not the case.
913    ///
914    /// The two slices returned go from the start of the string slice to `mid`,
915    /// and from `mid` to the end of the string slice.
916    ///
917    /// To get immutable string slices instead, see the [`split_at_checked`] method.
918    ///
919    /// [`split_at_checked`]: str::split_at_checked
920    ///
921    /// # Examples
922    ///
923    /// ```
924    /// let mut s = "Per Martin-Löf".to_string();
925    /// if let Some((first, last)) = s.split_at_mut_checked(3) {
926    ///     first.make_ascii_uppercase();
927    ///     assert_eq!("PER", first);
928    ///     assert_eq!(" Martin-Löf", last);
929    /// }
930    /// assert_eq!("PER Martin-Löf", s);
931    ///
932    /// assert_eq!(None, s.split_at_mut_checked(13));  // Inside “ö”
933    /// assert_eq!(None, s.split_at_mut_checked(16));  // Beyond the string length
934    /// ```
935    #[inline]
936    #[must_use]
937    #[stable(feature = "split_at_checked", since = "1.80.0")]
938    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
939    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
940        // is_char_boundary checks that the index is in [0, .len()]
941        if self.is_char_boundary(mid) {
942            // SAFETY: just checked that `mid` is on a char boundary.
943            Some(unsafe { self.split_at_mut_unchecked(mid) })
944        } else {
945            None
946        }
947    }
948
949    /// Divides one string slice into two at an index.
950    ///
951    /// # Safety
952    ///
953    /// The caller must ensure that `mid` is a valid byte offset from the start
954    /// of the string and falls on the boundary of a UTF-8 code point.
955    const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
956        let len = self.len();
957        let ptr = self.as_ptr();
958        // SAFETY: caller guarantees `mid` is on a char boundary.
959        unsafe {
960            (
961                from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
962                from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
963            )
964        }
965    }
966
967    /// Divides one string slice into two at an index.
968    ///
969    /// # Safety
970    ///
971    /// The caller must ensure that `mid` is a valid byte offset from the start
972    /// of the string and falls on the boundary of a UTF-8 code point.
973    const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
974        let len = self.len();
975        let ptr = self.as_mut_ptr();
976        // SAFETY: caller guarantees `mid` is on a char boundary.
977        unsafe {
978            (
979                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
980                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
981            )
982        }
983    }
984
985    /// Returns an iterator over the [`char`]s of a string slice.
986    ///
987    /// As a string slice consists of valid UTF-8, we can iterate through a
988    /// string slice by [`char`]. This method returns such an iterator.
989    ///
990    /// It's important to remember that [`char`] represents a Unicode Scalar
991    /// Value, and might not match your idea of what a 'character' is. Iteration
992    /// over grapheme clusters may be what you actually want. This functionality
993    /// is not provided by Rust's standard library, check crates.io instead.
994    ///
995    /// # Examples
996    ///
997    /// Basic usage:
998    ///
999    /// ```
1000    /// let word = "goodbye";
1001    ///
1002    /// let count = word.chars().count();
1003    /// assert_eq!(7, count);
1004    ///
1005    /// let mut chars = word.chars();
1006    ///
1007    /// assert_eq!(Some('g'), chars.next());
1008    /// assert_eq!(Some('o'), chars.next());
1009    /// assert_eq!(Some('o'), chars.next());
1010    /// assert_eq!(Some('d'), chars.next());
1011    /// assert_eq!(Some('b'), chars.next());
1012    /// assert_eq!(Some('y'), chars.next());
1013    /// assert_eq!(Some('e'), chars.next());
1014    ///
1015    /// assert_eq!(None, chars.next());
1016    /// ```
1017    ///
1018    /// Remember, [`char`]s might not match your intuition about characters:
1019    ///
1020    /// [`char`]: prim@char
1021    ///
1022    /// ```
1023    /// let y = "y̆";
1024    ///
1025    /// let mut chars = y.chars();
1026    ///
1027    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1028    /// assert_eq!(Some('\u{0306}'), chars.next());
1029    ///
1030    /// assert_eq!(None, chars.next());
1031    /// ```
1032    #[stable(feature = "rust1", since = "1.0.0")]
1033    #[inline]
1034    #[rustc_diagnostic_item = "str_chars"]
1035    pub fn chars(&self) -> Chars<'_> {
1036        Chars { iter: self.as_bytes().iter() }
1037    }
1038
1039    /// Returns an iterator over the [`char`]s of a string slice, and their
1040    /// positions.
1041    ///
1042    /// As a string slice consists of valid UTF-8, we can iterate through a
1043    /// string slice by [`char`]. This method returns an iterator of both
1044    /// these [`char`]s, as well as their byte positions.
1045    ///
1046    /// The iterator yields tuples. The position is first, the [`char`] is
1047    /// second.
1048    ///
1049    /// # Examples
1050    ///
1051    /// Basic usage:
1052    ///
1053    /// ```
1054    /// let word = "goodbye";
1055    ///
1056    /// let count = word.char_indices().count();
1057    /// assert_eq!(7, count);
1058    ///
1059    /// let mut char_indices = word.char_indices();
1060    ///
1061    /// assert_eq!(Some((0, 'g')), char_indices.next());
1062    /// assert_eq!(Some((1, 'o')), char_indices.next());
1063    /// assert_eq!(Some((2, 'o')), char_indices.next());
1064    /// assert_eq!(Some((3, 'd')), char_indices.next());
1065    /// assert_eq!(Some((4, 'b')), char_indices.next());
1066    /// assert_eq!(Some((5, 'y')), char_indices.next());
1067    /// assert_eq!(Some((6, 'e')), char_indices.next());
1068    ///
1069    /// assert_eq!(None, char_indices.next());
1070    /// ```
1071    ///
1072    /// Remember, [`char`]s might not match your intuition about characters:
1073    ///
1074    /// [`char`]: prim@char
1075    ///
1076    /// ```
1077    /// let yes = "y̆es";
1078    ///
1079    /// let mut char_indices = yes.char_indices();
1080    ///
1081    /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1082    /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1083    ///
1084    /// // note the 3 here - the previous character took up two bytes
1085    /// assert_eq!(Some((3, 'e')), char_indices.next());
1086    /// assert_eq!(Some((4, 's')), char_indices.next());
1087    ///
1088    /// assert_eq!(None, char_indices.next());
1089    /// ```
1090    #[stable(feature = "rust1", since = "1.0.0")]
1091    #[inline]
1092    pub fn char_indices(&self) -> CharIndices<'_> {
1093        CharIndices { front_offset: 0, iter: self.chars() }
1094    }
1095
1096    /// Returns an iterator over the bytes of a string slice.
1097    ///
1098    /// As a string slice consists of a sequence of bytes, we can iterate
1099    /// through a string slice by byte. This method returns such an iterator.
1100    ///
1101    /// # Examples
1102    ///
1103    /// ```
1104    /// let mut bytes = "bors".bytes();
1105    ///
1106    /// assert_eq!(Some(b'b'), bytes.next());
1107    /// assert_eq!(Some(b'o'), bytes.next());
1108    /// assert_eq!(Some(b'r'), bytes.next());
1109    /// assert_eq!(Some(b's'), bytes.next());
1110    ///
1111    /// assert_eq!(None, bytes.next());
1112    /// ```
1113    #[stable(feature = "rust1", since = "1.0.0")]
1114    #[inline]
1115    pub fn bytes(&self) -> Bytes<'_> {
1116        Bytes(self.as_bytes().iter().copied())
1117    }
1118
1119    /// Splits a string slice by whitespace.
1120    ///
1121    /// The iterator returned will return string slices that are sub-slices of
1122    /// the original string slice, separated by any amount of whitespace.
1123    ///
1124    /// 'Whitespace' is defined according to the terms of the Unicode Derived
1125    /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1126    /// instead, use [`split_ascii_whitespace`].
1127    ///
1128    /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1129    ///
1130    /// # Examples
1131    ///
1132    /// Basic usage:
1133    ///
1134    /// ```
1135    /// let mut iter = "A few words".split_whitespace();
1136    ///
1137    /// assert_eq!(Some("A"), iter.next());
1138    /// assert_eq!(Some("few"), iter.next());
1139    /// assert_eq!(Some("words"), iter.next());
1140    ///
1141    /// assert_eq!(None, iter.next());
1142    /// ```
1143    ///
1144    /// All kinds of whitespace are considered:
1145    ///
1146    /// ```
1147    /// let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace();
1148    /// assert_eq!(Some("Mary"), iter.next());
1149    /// assert_eq!(Some("had"), iter.next());
1150    /// assert_eq!(Some("a"), iter.next());
1151    /// assert_eq!(Some("little"), iter.next());
1152    /// assert_eq!(Some("lamb"), iter.next());
1153    ///
1154    /// assert_eq!(None, iter.next());
1155    /// ```
1156    ///
1157    /// If the string is empty or all whitespace, the iterator yields no string slices:
1158    /// ```
1159    /// assert_eq!("".split_whitespace().next(), None);
1160    /// assert_eq!("   ".split_whitespace().next(), None);
1161    /// ```
1162    #[must_use = "this returns the split string as an iterator, \
1163                  without modifying the original"]
1164    #[stable(feature = "split_whitespace", since = "1.1.0")]
1165    #[rustc_diagnostic_item = "str_split_whitespace"]
1166    #[inline]
1167    pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1168        SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1169    }
1170
1171    /// Splits a string slice by ASCII whitespace.
1172    ///
1173    /// The iterator returned will return string slices that are sub-slices of
1174    /// the original string slice, separated by any amount of ASCII whitespace.
1175    ///
1176    /// This uses the same definition as [`char::is_ascii_whitespace`].
1177    /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1178    ///
1179    /// [`split_whitespace`]: str::split_whitespace
1180    ///
1181    /// # Examples
1182    ///
1183    /// Basic usage:
1184    ///
1185    /// ```
1186    /// let mut iter = "A few words".split_ascii_whitespace();
1187    ///
1188    /// assert_eq!(Some("A"), iter.next());
1189    /// assert_eq!(Some("few"), iter.next());
1190    /// assert_eq!(Some("words"), iter.next());
1191    ///
1192    /// assert_eq!(None, iter.next());
1193    /// ```
1194    ///
1195    /// Various kinds of ASCII whitespace are considered
1196    /// (see [`char::is_ascii_whitespace`]):
1197    ///
1198    /// ```
1199    /// let mut iter = " Mary   had\ta little  \n\t lamb".split_ascii_whitespace();
1200    /// assert_eq!(Some("Mary"), iter.next());
1201    /// assert_eq!(Some("had"), iter.next());
1202    /// assert_eq!(Some("a"), iter.next());
1203    /// assert_eq!(Some("little"), iter.next());
1204    /// assert_eq!(Some("lamb"), iter.next());
1205    ///
1206    /// assert_eq!(None, iter.next());
1207    /// ```
1208    ///
1209    /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1210    /// ```
1211    /// assert_eq!("".split_ascii_whitespace().next(), None);
1212    /// assert_eq!("   ".split_ascii_whitespace().next(), None);
1213    /// ```
1214    #[must_use = "this returns the split string as an iterator, \
1215                  without modifying the original"]
1216    #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1217    #[inline]
1218    pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1219        let inner =
1220            self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1221        SplitAsciiWhitespace { inner }
1222    }
1223
1224    /// Returns an iterator over the lines of a string, as string slices.
1225    ///
1226    /// Lines are split at line endings that are either newlines (`\n`) or
1227    /// sequences of a carriage return followed by a line feed (`\r\n`).
1228    ///
1229    /// Line terminators are not included in the lines returned by the iterator.
1230    ///
1231    /// Note that any carriage return (`\r`) not immediately followed by a
1232    /// line feed (`\n`) does not split a line. These carriage returns are
1233    /// thereby included in the produced lines.
1234    ///
1235    /// The final line ending is optional. A string that ends with a final line
1236    /// ending will return the same lines as an otherwise identical string
1237    /// without a final line ending.
1238    ///
1239    /// # Examples
1240    ///
1241    /// Basic usage:
1242    ///
1243    /// ```
1244    /// let text = "foo\r\nbar\n\nbaz\r";
1245    /// let mut lines = text.lines();
1246    ///
1247    /// assert_eq!(Some("foo"), lines.next());
1248    /// assert_eq!(Some("bar"), lines.next());
1249    /// assert_eq!(Some(""), lines.next());
1250    /// // Trailing carriage return is included in the last line
1251    /// assert_eq!(Some("baz\r"), lines.next());
1252    ///
1253    /// assert_eq!(None, lines.next());
1254    /// ```
1255    ///
1256    /// The final line does not require any ending:
1257    ///
1258    /// ```
1259    /// let text = "foo\nbar\n\r\nbaz";
1260    /// let mut lines = text.lines();
1261    ///
1262    /// assert_eq!(Some("foo"), lines.next());
1263    /// assert_eq!(Some("bar"), lines.next());
1264    /// assert_eq!(Some(""), lines.next());
1265    /// assert_eq!(Some("baz"), lines.next());
1266    ///
1267    /// assert_eq!(None, lines.next());
1268    /// ```
1269    #[stable(feature = "rust1", since = "1.0.0")]
1270    #[inline]
1271    pub fn lines(&self) -> Lines<'_> {
1272        Lines(self.split_inclusive('\n').map(LinesMap))
1273    }
1274
1275    /// Returns an iterator over the lines of a string.
1276    #[stable(feature = "rust1", since = "1.0.0")]
1277    #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1278    #[inline]
1279    #[allow(deprecated)]
1280    pub fn lines_any(&self) -> LinesAny<'_> {
1281        LinesAny(self.lines())
1282    }
1283
1284    /// Returns an iterator of `u16` over the string encoded
1285    /// as native endian UTF-16 (without byte-order mark).
1286    ///
1287    /// # Examples
1288    ///
1289    /// ```
1290    /// let text = "Zażółć gęślą jaźń";
1291    ///
1292    /// let utf8_len = text.len();
1293    /// let utf16_len = text.encode_utf16().count();
1294    ///
1295    /// assert!(utf16_len <= utf8_len);
1296    /// ```
1297    #[must_use = "this returns the encoded string as an iterator, \
1298                  without modifying the original"]
1299    #[stable(feature = "encode_utf16", since = "1.8.0")]
1300    pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1301        EncodeUtf16 { chars: self.chars(), extra: 0 }
1302    }
1303
1304    /// Returns `true` if the given pattern matches a sub-slice of
1305    /// this string slice.
1306    ///
1307    /// Returns `false` if it does not.
1308    ///
1309    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1310    /// function or closure that determines if a character matches.
1311    ///
1312    /// [`char`]: prim@char
1313    /// [pattern]: self::pattern
1314    ///
1315    /// # Examples
1316    ///
1317    /// ```
1318    /// let bananas = "bananas";
1319    ///
1320    /// assert!(bananas.contains("nana"));
1321    /// assert!(!bananas.contains("apples"));
1322    /// ```
1323    #[stable(feature = "rust1", since = "1.0.0")]
1324    #[inline]
1325    pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1326        pat.is_contained_in(self)
1327    }
1328
1329    /// Returns `true` if the given pattern matches a prefix of this
1330    /// string slice.
1331    ///
1332    /// Returns `false` if it does not.
1333    ///
1334    /// The [pattern] can be a `&str`, in which case this function will return true if
1335    /// the `&str` is a prefix of this string slice.
1336    ///
1337    /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1338    /// function or closure that determines if a character matches.
1339    /// These will only be checked against the first character of this string slice.
1340    /// Look at the second example below regarding behavior for slices of [`char`]s.
1341    ///
1342    /// [`char`]: prim@char
1343    /// [pattern]: self::pattern
1344    ///
1345    /// # Examples
1346    ///
1347    /// ```
1348    /// let bananas = "bananas";
1349    ///
1350    /// assert!(bananas.starts_with("bana"));
1351    /// assert!(!bananas.starts_with("nana"));
1352    /// ```
1353    ///
1354    /// ```
1355    /// let bananas = "bananas";
1356    ///
1357    /// // Note that both of these assert successfully.
1358    /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1359    /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1360    /// ```
1361    #[stable(feature = "rust1", since = "1.0.0")]
1362    #[rustc_diagnostic_item = "str_starts_with"]
1363    pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1364        pat.is_prefix_of(self)
1365    }
1366
1367    /// Returns `true` if the given pattern matches a suffix of this
1368    /// string slice.
1369    ///
1370    /// Returns `false` if it does not.
1371    ///
1372    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1373    /// function or closure that determines if a character matches.
1374    ///
1375    /// [`char`]: prim@char
1376    /// [pattern]: self::pattern
1377    ///
1378    /// # Examples
1379    ///
1380    /// ```
1381    /// let bananas = "bananas";
1382    ///
1383    /// assert!(bananas.ends_with("anas"));
1384    /// assert!(!bananas.ends_with("nana"));
1385    /// ```
1386    #[stable(feature = "rust1", since = "1.0.0")]
1387    #[rustc_diagnostic_item = "str_ends_with"]
1388    pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1389    where
1390        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1391    {
1392        pat.is_suffix_of(self)
1393    }
1394
1395    /// Returns the byte index of the first character of this string slice that
1396    /// matches the pattern.
1397    ///
1398    /// Returns [`None`] if the pattern doesn't match.
1399    ///
1400    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1401    /// function or closure that determines if a character matches.
1402    ///
1403    /// [`char`]: prim@char
1404    /// [pattern]: self::pattern
1405    ///
1406    /// # Examples
1407    ///
1408    /// Simple patterns:
1409    ///
1410    /// ```
1411    /// let s = "Löwe 老虎 Léopard Gepardi";
1412    ///
1413    /// assert_eq!(s.find('L'), Some(0));
1414    /// assert_eq!(s.find('é'), Some(14));
1415    /// assert_eq!(s.find("pard"), Some(17));
1416    /// ```
1417    ///
1418    /// More complex patterns using point-free style and closures:
1419    ///
1420    /// ```
1421    /// let s = "Löwe 老虎 Léopard";
1422    ///
1423    /// assert_eq!(s.find(char::is_whitespace), Some(5));
1424    /// assert_eq!(s.find(char::is_lowercase), Some(1));
1425    /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1426    /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1427    /// ```
1428    ///
1429    /// Not finding the pattern:
1430    ///
1431    /// ```
1432    /// let s = "Löwe 老虎 Léopard";
1433    /// let x: &[_] = &['1', '2'];
1434    ///
1435    /// assert_eq!(s.find(x), None);
1436    /// ```
1437    #[stable(feature = "rust1", since = "1.0.0")]
1438    #[inline]
1439    pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1440        pat.into_searcher(self).next_match().map(|(i, _)| i)
1441    }
1442
1443    /// Returns the byte index for the first character of the last match of the pattern in
1444    /// this string slice.
1445    ///
1446    /// Returns [`None`] if the pattern doesn't match.
1447    ///
1448    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1449    /// function or closure that determines if a character matches.
1450    ///
1451    /// [`char`]: prim@char
1452    /// [pattern]: self::pattern
1453    ///
1454    /// # Examples
1455    ///
1456    /// Simple patterns:
1457    ///
1458    /// ```
1459    /// let s = "Löwe 老虎 Léopard Gepardi";
1460    ///
1461    /// assert_eq!(s.rfind('L'), Some(13));
1462    /// assert_eq!(s.rfind('é'), Some(14));
1463    /// assert_eq!(s.rfind("pard"), Some(24));
1464    /// ```
1465    ///
1466    /// More complex patterns with closures:
1467    ///
1468    /// ```
1469    /// let s = "Löwe 老虎 Léopard";
1470    ///
1471    /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1472    /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1473    /// ```
1474    ///
1475    /// Not finding the pattern:
1476    ///
1477    /// ```
1478    /// let s = "Löwe 老虎 Léopard";
1479    /// let x: &[_] = &['1', '2'];
1480    ///
1481    /// assert_eq!(s.rfind(x), None);
1482    /// ```
1483    #[stable(feature = "rust1", since = "1.0.0")]
1484    #[inline]
1485    pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1486    where
1487        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1488    {
1489        pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1490    }
1491
1492    /// Returns an iterator over substrings of this string slice, separated by
1493    /// characters matched by a pattern.
1494    ///
1495    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1496    /// function or closure that determines if a character matches.
1497    ///
1498    /// [`char`]: prim@char
1499    /// [pattern]: self::pattern
1500    ///
1501    /// # Iterator behavior
1502    ///
1503    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1504    /// allows a reverse search and forward/reverse search yields the same
1505    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1506    ///
1507    /// If the pattern allows a reverse search but its results might differ
1508    /// from a forward search, the [`rsplit`] method can be used.
1509    ///
1510    /// [`rsplit`]: str::rsplit
1511    ///
1512    /// # Examples
1513    ///
1514    /// Simple patterns:
1515    ///
1516    /// ```
1517    /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1518    /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1519    ///
1520    /// let v: Vec<&str> = "".split('X').collect();
1521    /// assert_eq!(v, [""]);
1522    ///
1523    /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1524    /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1525    ///
1526    /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1527    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1528    ///
1529    /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1530    /// assert_eq!(v, ["abc", "def", "ghi"]);
1531    ///
1532    /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1533    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1534    /// ```
1535    ///
1536    /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1537    ///
1538    /// ```
1539    /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1540    /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1541    /// ```
1542    ///
1543    /// A more complex pattern, using a closure:
1544    ///
1545    /// ```
1546    /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1547    /// assert_eq!(v, ["abc", "def", "ghi"]);
1548    /// ```
1549    ///
1550    /// If a string contains multiple contiguous separators, you will end up
1551    /// with empty strings in the output:
1552    ///
1553    /// ```
1554    /// let x = "||||a||b|c".to_string();
1555    /// let d: Vec<_> = x.split('|').collect();
1556    ///
1557    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1558    /// ```
1559    ///
1560    /// Contiguous separators are separated by the empty string.
1561    ///
1562    /// ```
1563    /// let x = "(///)".to_string();
1564    /// let d: Vec<_> = x.split('/').collect();
1565    ///
1566    /// assert_eq!(d, &["(", "", "", ")"]);
1567    /// ```
1568    ///
1569    /// Separators at the start or end of a string are neighbored
1570    /// by empty strings.
1571    ///
1572    /// ```
1573    /// let d: Vec<_> = "010".split("0").collect();
1574    /// assert_eq!(d, &["", "1", ""]);
1575    /// ```
1576    ///
1577    /// When the empty string is used as a separator, it separates
1578    /// every character in the string, along with the beginning
1579    /// and end of the string.
1580    ///
1581    /// ```
1582    /// let f: Vec<_> = "rust".split("").collect();
1583    /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1584    /// ```
1585    ///
1586    /// Contiguous separators can lead to possibly surprising behavior
1587    /// when whitespace is used as the separator. This code is correct:
1588    ///
1589    /// ```
1590    /// let x = "    a  b c".to_string();
1591    /// let d: Vec<_> = x.split(' ').collect();
1592    ///
1593    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1594    /// ```
1595    ///
1596    /// It does _not_ give you:
1597    ///
1598    /// ```,ignore
1599    /// assert_eq!(d, &["a", "b", "c"]);
1600    /// ```
1601    ///
1602    /// Use [`split_whitespace`] for this behavior.
1603    ///
1604    /// [`split_whitespace`]: str::split_whitespace
1605    #[stable(feature = "rust1", since = "1.0.0")]
1606    #[inline]
1607    pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1608        Split(SplitInternal {
1609            start: 0,
1610            end: self.len(),
1611            matcher: pat.into_searcher(self),
1612            allow_trailing_empty: true,
1613            finished: false,
1614        })
1615    }
1616
1617    /// Returns an iterator over substrings of this string slice, separated by
1618    /// characters matched by a pattern.
1619    ///
1620    /// Differs from the iterator produced by `split` in that `split_inclusive`
1621    /// leaves the matched part as the terminator of the substring.
1622    ///
1623    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1624    /// function or closure that determines if a character matches.
1625    ///
1626    /// [`char`]: prim@char
1627    /// [pattern]: self::pattern
1628    ///
1629    /// # Examples
1630    ///
1631    /// ```
1632    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1633    ///     .split_inclusive('\n').collect();
1634    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1635    /// ```
1636    ///
1637    /// If the last element of the string is matched,
1638    /// that element will be considered the terminator of the preceding substring.
1639    /// That substring will be the last item returned by the iterator.
1640    ///
1641    /// ```
1642    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1643    ///     .split_inclusive('\n').collect();
1644    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1645    /// ```
1646    #[stable(feature = "split_inclusive", since = "1.51.0")]
1647    #[inline]
1648    pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1649        SplitInclusive(SplitInternal {
1650            start: 0,
1651            end: self.len(),
1652            matcher: pat.into_searcher(self),
1653            allow_trailing_empty: false,
1654            finished: false,
1655        })
1656    }
1657
1658    /// Returns an iterator over substrings of the given string slice, separated
1659    /// by characters matched by a pattern and yielded in reverse order.
1660    ///
1661    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1662    /// function or closure that determines if a character matches.
1663    ///
1664    /// [`char`]: prim@char
1665    /// [pattern]: self::pattern
1666    ///
1667    /// # Iterator behavior
1668    ///
1669    /// The returned iterator requires that the pattern supports a reverse
1670    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1671    /// search yields the same elements.
1672    ///
1673    /// For iterating from the front, the [`split`] method can be used.
1674    ///
1675    /// [`split`]: str::split
1676    ///
1677    /// # Examples
1678    ///
1679    /// Simple patterns:
1680    ///
1681    /// ```
1682    /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1683    /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1684    ///
1685    /// let v: Vec<&str> = "".rsplit('X').collect();
1686    /// assert_eq!(v, [""]);
1687    ///
1688    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1689    /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1690    ///
1691    /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1692    /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1693    /// ```
1694    ///
1695    /// A more complex pattern, using a closure:
1696    ///
1697    /// ```
1698    /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1699    /// assert_eq!(v, ["ghi", "def", "abc"]);
1700    /// ```
1701    #[stable(feature = "rust1", since = "1.0.0")]
1702    #[inline]
1703    pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1704    where
1705        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1706    {
1707        RSplit(self.split(pat).0)
1708    }
1709
1710    /// Returns an iterator over substrings of the given string slice, separated
1711    /// by characters matched by a pattern.
1712    ///
1713    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1714    /// function or closure that determines if a character matches.
1715    ///
1716    /// [`char`]: prim@char
1717    /// [pattern]: self::pattern
1718    ///
1719    /// Equivalent to [`split`], except that the trailing substring
1720    /// is skipped if empty.
1721    ///
1722    /// [`split`]: str::split
1723    ///
1724    /// This method can be used for string data that is _terminated_,
1725    /// rather than _separated_ by a pattern.
1726    ///
1727    /// # Iterator behavior
1728    ///
1729    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1730    /// allows a reverse search and forward/reverse search yields the same
1731    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1732    ///
1733    /// If the pattern allows a reverse search but its results might differ
1734    /// from a forward search, the [`rsplit_terminator`] method can be used.
1735    ///
1736    /// [`rsplit_terminator`]: str::rsplit_terminator
1737    ///
1738    /// # Examples
1739    ///
1740    /// ```
1741    /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1742    /// assert_eq!(v, ["A", "B"]);
1743    ///
1744    /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1745    /// assert_eq!(v, ["A", "", "B", ""]);
1746    ///
1747    /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1748    /// assert_eq!(v, ["A", "B", "C", "D"]);
1749    /// ```
1750    #[stable(feature = "rust1", since = "1.0.0")]
1751    #[inline]
1752    pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1753        SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1754    }
1755
1756    /// Returns an iterator over substrings of `self`, separated by characters
1757    /// matched by a pattern and yielded in reverse order.
1758    ///
1759    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1760    /// function or closure that determines if a character matches.
1761    ///
1762    /// [`char`]: prim@char
1763    /// [pattern]: self::pattern
1764    ///
1765    /// Equivalent to [`split`], except that the trailing substring is
1766    /// skipped if empty.
1767    ///
1768    /// [`split`]: str::split
1769    ///
1770    /// This method can be used for string data that is _terminated_,
1771    /// rather than _separated_ by a pattern.
1772    ///
1773    /// # Iterator behavior
1774    ///
1775    /// The returned iterator requires that the pattern supports a
1776    /// reverse search, and it will be double ended if a forward/reverse
1777    /// search yields the same elements.
1778    ///
1779    /// For iterating from the front, the [`split_terminator`] method can be
1780    /// used.
1781    ///
1782    /// [`split_terminator`]: str::split_terminator
1783    ///
1784    /// # Examples
1785    ///
1786    /// ```
1787    /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1788    /// assert_eq!(v, ["B", "A"]);
1789    ///
1790    /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1791    /// assert_eq!(v, ["", "B", "", "A"]);
1792    ///
1793    /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1794    /// assert_eq!(v, ["D", "C", "B", "A"]);
1795    /// ```
1796    #[stable(feature = "rust1", since = "1.0.0")]
1797    #[inline]
1798    pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1799    where
1800        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1801    {
1802        RSplitTerminator(self.split_terminator(pat).0)
1803    }
1804
1805    /// Returns an iterator over substrings of the given string slice, separated
1806    /// by a pattern, restricted to returning at most `n` items.
1807    ///
1808    /// If `n` substrings are returned, the last substring (the `n`th substring)
1809    /// will contain the remainder of the string.
1810    ///
1811    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1812    /// function or closure that determines if a character matches.
1813    ///
1814    /// [`char`]: prim@char
1815    /// [pattern]: self::pattern
1816    ///
1817    /// # Iterator behavior
1818    ///
1819    /// The returned iterator will not be double ended, because it is
1820    /// not efficient to support.
1821    ///
1822    /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1823    /// used.
1824    ///
1825    /// [`rsplitn`]: str::rsplitn
1826    ///
1827    /// # Examples
1828    ///
1829    /// Simple patterns:
1830    ///
1831    /// ```
1832    /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1833    /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1834    ///
1835    /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1836    /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1837    ///
1838    /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1839    /// assert_eq!(v, ["abcXdef"]);
1840    ///
1841    /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1842    /// assert_eq!(v, [""]);
1843    /// ```
1844    ///
1845    /// A more complex pattern, using a closure:
1846    ///
1847    /// ```
1848    /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1849    /// assert_eq!(v, ["abc", "defXghi"]);
1850    /// ```
1851    #[stable(feature = "rust1", since = "1.0.0")]
1852    #[inline]
1853    pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1854        SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1855    }
1856
1857    /// Returns an iterator over substrings of this string slice, separated by a
1858    /// pattern, starting from the end of the string, restricted to returning at
1859    /// most `n` items.
1860    ///
1861    /// If `n` substrings are returned, the last substring (the `n`th substring)
1862    /// will contain the remainder of the string.
1863    ///
1864    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1865    /// function or closure that determines if a character matches.
1866    ///
1867    /// [`char`]: prim@char
1868    /// [pattern]: self::pattern
1869    ///
1870    /// # Iterator behavior
1871    ///
1872    /// The returned iterator will not be double ended, because it is not
1873    /// efficient to support.
1874    ///
1875    /// For splitting from the front, the [`splitn`] method can be used.
1876    ///
1877    /// [`splitn`]: str::splitn
1878    ///
1879    /// # Examples
1880    ///
1881    /// Simple patterns:
1882    ///
1883    /// ```
1884    /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1885    /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1886    ///
1887    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1888    /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1889    ///
1890    /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1891    /// assert_eq!(v, ["leopard", "lion::tiger"]);
1892    /// ```
1893    ///
1894    /// A more complex pattern, using a closure:
1895    ///
1896    /// ```
1897    /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1898    /// assert_eq!(v, ["ghi", "abc1def"]);
1899    /// ```
1900    #[stable(feature = "rust1", since = "1.0.0")]
1901    #[inline]
1902    pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
1903    where
1904        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1905    {
1906        RSplitN(self.splitn(n, pat).0)
1907    }
1908
1909    /// Splits the string on the first occurrence of the specified delimiter and
1910    /// returns prefix before delimiter and suffix after delimiter.
1911    ///
1912    /// # Examples
1913    ///
1914    /// ```
1915    /// assert_eq!("cfg".split_once('='), None);
1916    /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
1917    /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
1918    /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1919    /// ```
1920    #[stable(feature = "str_split_once", since = "1.52.0")]
1921    #[inline]
1922    pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
1923        let (start, end) = delimiter.into_searcher(self).next_match()?;
1924        // SAFETY: `Searcher` is known to return valid indices.
1925        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1926    }
1927
1928    /// Splits the string on the last occurrence of the specified delimiter and
1929    /// returns prefix before delimiter and suffix after delimiter.
1930    ///
1931    /// # Examples
1932    ///
1933    /// ```
1934    /// assert_eq!("cfg".rsplit_once('='), None);
1935    /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
1936    /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1937    /// ```
1938    #[stable(feature = "str_split_once", since = "1.52.0")]
1939    #[inline]
1940    pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
1941    where
1942        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1943    {
1944        let (start, end) = delimiter.into_searcher(self).next_match_back()?;
1945        // SAFETY: `Searcher` is known to return valid indices.
1946        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1947    }
1948
1949    /// Returns an iterator over the disjoint matches of a pattern within the
1950    /// given string slice.
1951    ///
1952    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1953    /// function or closure that determines if a character matches.
1954    ///
1955    /// [`char`]: prim@char
1956    /// [pattern]: self::pattern
1957    ///
1958    /// # Iterator behavior
1959    ///
1960    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1961    /// allows a reverse search and forward/reverse search yields the same
1962    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1963    ///
1964    /// If the pattern allows a reverse search but its results might differ
1965    /// from a forward search, the [`rmatches`] method can be used.
1966    ///
1967    /// [`rmatches`]: str::rmatches
1968    ///
1969    /// # Examples
1970    ///
1971    /// ```
1972    /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
1973    /// assert_eq!(v, ["abc", "abc", "abc"]);
1974    ///
1975    /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
1976    /// assert_eq!(v, ["1", "2", "3"]);
1977    /// ```
1978    #[stable(feature = "str_matches", since = "1.2.0")]
1979    #[inline]
1980    pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
1981        Matches(MatchesInternal(pat.into_searcher(self)))
1982    }
1983
1984    /// Returns an iterator over the disjoint matches of a pattern within this
1985    /// string slice, yielded in reverse order.
1986    ///
1987    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1988    /// function or closure that determines if a character matches.
1989    ///
1990    /// [`char`]: prim@char
1991    /// [pattern]: self::pattern
1992    ///
1993    /// # Iterator behavior
1994    ///
1995    /// The returned iterator requires that the pattern supports a reverse
1996    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1997    /// search yields the same elements.
1998    ///
1999    /// For iterating from the front, the [`matches`] method can be used.
2000    ///
2001    /// [`matches`]: str::matches
2002    ///
2003    /// # Examples
2004    ///
2005    /// ```
2006    /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2007    /// assert_eq!(v, ["abc", "abc", "abc"]);
2008    ///
2009    /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2010    /// assert_eq!(v, ["3", "2", "1"]);
2011    /// ```
2012    #[stable(feature = "str_matches", since = "1.2.0")]
2013    #[inline]
2014    pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2015    where
2016        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2017    {
2018        RMatches(self.matches(pat).0)
2019    }
2020
2021    /// Returns an iterator over the disjoint matches of a pattern within this string
2022    /// slice as well as the index that the match starts at.
2023    ///
2024    /// For matches of `pat` within `self` that overlap, only the indices
2025    /// corresponding to the first match are returned.
2026    ///
2027    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2028    /// function or closure that determines if a character matches.
2029    ///
2030    /// [`char`]: prim@char
2031    /// [pattern]: self::pattern
2032    ///
2033    /// # Iterator behavior
2034    ///
2035    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2036    /// allows a reverse search and forward/reverse search yields the same
2037    /// elements. This is true for, e.g., [`char`], but not for `&str`.
2038    ///
2039    /// If the pattern allows a reverse search but its results might differ
2040    /// from a forward search, the [`rmatch_indices`] method can be used.
2041    ///
2042    /// [`rmatch_indices`]: str::rmatch_indices
2043    ///
2044    /// # Examples
2045    ///
2046    /// ```
2047    /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2048    /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2049    ///
2050    /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2051    /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2052    ///
2053    /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2054    /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2055    /// ```
2056    #[stable(feature = "str_match_indices", since = "1.5.0")]
2057    #[inline]
2058    pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2059        MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2060    }
2061
2062    /// Returns an iterator over the disjoint matches of a pattern within `self`,
2063    /// yielded in reverse order along with the index of the match.
2064    ///
2065    /// For matches of `pat` within `self` that overlap, only the indices
2066    /// corresponding to the last match are returned.
2067    ///
2068    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2069    /// function or closure that determines if a character matches.
2070    ///
2071    /// [`char`]: prim@char
2072    /// [pattern]: self::pattern
2073    ///
2074    /// # Iterator behavior
2075    ///
2076    /// The returned iterator requires that the pattern supports a reverse
2077    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2078    /// search yields the same elements.
2079    ///
2080    /// For iterating from the front, the [`match_indices`] method can be used.
2081    ///
2082    /// [`match_indices`]: str::match_indices
2083    ///
2084    /// # Examples
2085    ///
2086    /// ```
2087    /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2088    /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2089    ///
2090    /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2091    /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2092    ///
2093    /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2094    /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2095    /// ```
2096    #[stable(feature = "str_match_indices", since = "1.5.0")]
2097    #[inline]
2098    pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2099    where
2100        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2101    {
2102        RMatchIndices(self.match_indices(pat).0)
2103    }
2104
2105    /// Returns a string slice with leading and trailing whitespace removed.
2106    ///
2107    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2108    /// Core Property `White_Space`, which includes newlines.
2109    ///
2110    /// # Examples
2111    ///
2112    /// ```
2113    /// let s = "\n Hello\tworld\t\n";
2114    ///
2115    /// assert_eq!("Hello\tworld", s.trim());
2116    /// ```
2117    #[inline]
2118    #[must_use = "this returns the trimmed string as a slice, \
2119                  without modifying the original"]
2120    #[stable(feature = "rust1", since = "1.0.0")]
2121    #[rustc_diagnostic_item = "str_trim"]
2122    pub fn trim(&self) -> &str {
2123        self.trim_matches(char::is_whitespace)
2124    }
2125
2126    /// Returns a string slice with leading whitespace removed.
2127    ///
2128    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2129    /// Core Property `White_Space`, which includes newlines.
2130    ///
2131    /// # Text directionality
2132    ///
2133    /// A string is a sequence of bytes. `start` in this context means the first
2134    /// position of that byte string; for a left-to-right language like English or
2135    /// Russian, this will be left side, and for right-to-left languages like
2136    /// Arabic or Hebrew, this will be the right side.
2137    ///
2138    /// # Examples
2139    ///
2140    /// Basic usage:
2141    ///
2142    /// ```
2143    /// let s = "\n Hello\tworld\t\n";
2144    /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2145    /// ```
2146    ///
2147    /// Directionality:
2148    ///
2149    /// ```
2150    /// let s = "  English  ";
2151    /// assert!(Some('E') == s.trim_start().chars().next());
2152    ///
2153    /// let s = "  עברית  ";
2154    /// assert!(Some('ע') == s.trim_start().chars().next());
2155    /// ```
2156    #[inline]
2157    #[must_use = "this returns the trimmed string as a new slice, \
2158                  without modifying the original"]
2159    #[stable(feature = "trim_direction", since = "1.30.0")]
2160    #[rustc_diagnostic_item = "str_trim_start"]
2161    pub fn trim_start(&self) -> &str {
2162        self.trim_start_matches(char::is_whitespace)
2163    }
2164
2165    /// Returns a string slice with trailing whitespace removed.
2166    ///
2167    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2168    /// Core Property `White_Space`, which includes newlines.
2169    ///
2170    /// # Text directionality
2171    ///
2172    /// A string is a sequence of bytes. `end` in this context means the last
2173    /// position of that byte string; for a left-to-right language like English or
2174    /// Russian, this will be right side, and for right-to-left languages like
2175    /// Arabic or Hebrew, this will be the left side.
2176    ///
2177    /// # Examples
2178    ///
2179    /// Basic usage:
2180    ///
2181    /// ```
2182    /// let s = "\n Hello\tworld\t\n";
2183    /// assert_eq!("\n Hello\tworld", s.trim_end());
2184    /// ```
2185    ///
2186    /// Directionality:
2187    ///
2188    /// ```
2189    /// let s = "  English  ";
2190    /// assert!(Some('h') == s.trim_end().chars().rev().next());
2191    ///
2192    /// let s = "  עברית  ";
2193    /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2194    /// ```
2195    #[inline]
2196    #[must_use = "this returns the trimmed string as a new slice, \
2197                  without modifying the original"]
2198    #[stable(feature = "trim_direction", since = "1.30.0")]
2199    #[rustc_diagnostic_item = "str_trim_end"]
2200    pub fn trim_end(&self) -> &str {
2201        self.trim_end_matches(char::is_whitespace)
2202    }
2203
2204    /// Returns a string slice with leading whitespace removed.
2205    ///
2206    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2207    /// Core Property `White_Space`.
2208    ///
2209    /// # Text directionality
2210    ///
2211    /// A string is a sequence of bytes. 'Left' in this context means the first
2212    /// position of that byte string; for a language like Arabic or Hebrew
2213    /// which are 'right to left' rather than 'left to right', this will be
2214    /// the _right_ side, not the left.
2215    ///
2216    /// # Examples
2217    ///
2218    /// Basic usage:
2219    ///
2220    /// ```
2221    /// let s = " Hello\tworld\t";
2222    ///
2223    /// assert_eq!("Hello\tworld\t", s.trim_left());
2224    /// ```
2225    ///
2226    /// Directionality:
2227    ///
2228    /// ```
2229    /// let s = "  English";
2230    /// assert!(Some('E') == s.trim_left().chars().next());
2231    ///
2232    /// let s = "  עברית";
2233    /// assert!(Some('ע') == s.trim_left().chars().next());
2234    /// ```
2235    #[must_use = "this returns the trimmed string as a new slice, \
2236                  without modifying the original"]
2237    #[inline]
2238    #[stable(feature = "rust1", since = "1.0.0")]
2239    #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2240    pub fn trim_left(&self) -> &str {
2241        self.trim_start()
2242    }
2243
2244    /// Returns a string slice with trailing whitespace removed.
2245    ///
2246    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2247    /// Core Property `White_Space`.
2248    ///
2249    /// # Text directionality
2250    ///
2251    /// A string is a sequence of bytes. 'Right' in this context means the last
2252    /// position of that byte string; for a language like Arabic or Hebrew
2253    /// which are 'right to left' rather than 'left to right', this will be
2254    /// the _left_ side, not the right.
2255    ///
2256    /// # Examples
2257    ///
2258    /// Basic usage:
2259    ///
2260    /// ```
2261    /// let s = " Hello\tworld\t";
2262    ///
2263    /// assert_eq!(" Hello\tworld", s.trim_right());
2264    /// ```
2265    ///
2266    /// Directionality:
2267    ///
2268    /// ```
2269    /// let s = "English  ";
2270    /// assert!(Some('h') == s.trim_right().chars().rev().next());
2271    ///
2272    /// let s = "עברית  ";
2273    /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2274    /// ```
2275    #[must_use = "this returns the trimmed string as a new slice, \
2276                  without modifying the original"]
2277    #[inline]
2278    #[stable(feature = "rust1", since = "1.0.0")]
2279    #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2280    pub fn trim_right(&self) -> &str {
2281        self.trim_end()
2282    }
2283
2284    /// Returns a string slice with all prefixes and suffixes that match a
2285    /// pattern repeatedly removed.
2286    ///
2287    /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2288    /// or closure that determines if a character matches.
2289    ///
2290    /// [`char`]: prim@char
2291    /// [pattern]: self::pattern
2292    ///
2293    /// # Examples
2294    ///
2295    /// Simple patterns:
2296    ///
2297    /// ```
2298    /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2299    /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2300    ///
2301    /// let x: &[_] = &['1', '2'];
2302    /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2303    /// ```
2304    ///
2305    /// A more complex pattern, using a closure:
2306    ///
2307    /// ```
2308    /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2309    /// ```
2310    #[must_use = "this returns the trimmed string as a new slice, \
2311                  without modifying the original"]
2312    #[stable(feature = "rust1", since = "1.0.0")]
2313    pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2314    where
2315        for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2316    {
2317        let mut i = 0;
2318        let mut j = 0;
2319        let mut matcher = pat.into_searcher(self);
2320        if let Some((a, b)) = matcher.next_reject() {
2321            i = a;
2322            j = b; // Remember earliest known match, correct it below if
2323            // last match is different
2324        }
2325        if let Some((_, b)) = matcher.next_reject_back() {
2326            j = b;
2327        }
2328        // SAFETY: `Searcher` is known to return valid indices.
2329        unsafe { self.get_unchecked(i..j) }
2330    }
2331
2332    /// Returns a string slice with all prefixes that match a pattern
2333    /// repeatedly removed.
2334    ///
2335    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2336    /// function or closure that determines if a character matches.
2337    ///
2338    /// [`char`]: prim@char
2339    /// [pattern]: self::pattern
2340    ///
2341    /// # Text directionality
2342    ///
2343    /// A string is a sequence of bytes. `start` in this context means the first
2344    /// position of that byte string; for a left-to-right language like English or
2345    /// Russian, this will be left side, and for right-to-left languages like
2346    /// Arabic or Hebrew, this will be the right side.
2347    ///
2348    /// # Examples
2349    ///
2350    /// ```
2351    /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2352    /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2353    ///
2354    /// let x: &[_] = &['1', '2'];
2355    /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2356    /// ```
2357    #[must_use = "this returns the trimmed string as a new slice, \
2358                  without modifying the original"]
2359    #[stable(feature = "trim_direction", since = "1.30.0")]
2360    pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2361        let mut i = self.len();
2362        let mut matcher = pat.into_searcher(self);
2363        if let Some((a, _)) = matcher.next_reject() {
2364            i = a;
2365        }
2366        // SAFETY: `Searcher` is known to return valid indices.
2367        unsafe { self.get_unchecked(i..self.len()) }
2368    }
2369
2370    /// Returns a string slice with the prefix removed.
2371    ///
2372    /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2373    /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2374    ///
2375    /// If the string does not start with `prefix`, returns `None`.
2376    ///
2377    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2378    /// function or closure that determines if a character matches.
2379    ///
2380    /// [`char`]: prim@char
2381    /// [pattern]: self::pattern
2382    /// [`trim_start_matches`]: Self::trim_start_matches
2383    ///
2384    /// # Examples
2385    ///
2386    /// ```
2387    /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2388    /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2389    /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2390    /// ```
2391    #[must_use = "this returns the remaining substring as a new slice, \
2392                  without modifying the original"]
2393    #[stable(feature = "str_strip", since = "1.45.0")]
2394    pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2395        prefix.strip_prefix_of(self)
2396    }
2397
2398    /// Returns a string slice with the suffix removed.
2399    ///
2400    /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2401    /// wrapped in `Some`.  Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2402    ///
2403    /// If the string does not end with `suffix`, returns `None`.
2404    ///
2405    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2406    /// function or closure that determines if a character matches.
2407    ///
2408    /// [`char`]: prim@char
2409    /// [pattern]: self::pattern
2410    /// [`trim_end_matches`]: Self::trim_end_matches
2411    ///
2412    /// # Examples
2413    ///
2414    /// ```
2415    /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2416    /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2417    /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2418    /// ```
2419    #[must_use = "this returns the remaining substring as a new slice, \
2420                  without modifying the original"]
2421    #[stable(feature = "str_strip", since = "1.45.0")]
2422    pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2423    where
2424        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2425    {
2426        suffix.strip_suffix_of(self)
2427    }
2428
2429    /// Returns a string slice with all suffixes that match a pattern
2430    /// repeatedly removed.
2431    ///
2432    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2433    /// function or closure that determines if a character matches.
2434    ///
2435    /// [`char`]: prim@char
2436    /// [pattern]: self::pattern
2437    ///
2438    /// # Text directionality
2439    ///
2440    /// A string is a sequence of bytes. `end` in this context means the last
2441    /// position of that byte string; for a left-to-right language like English or
2442    /// Russian, this will be right side, and for right-to-left languages like
2443    /// Arabic or Hebrew, this will be the left side.
2444    ///
2445    /// # Examples
2446    ///
2447    /// Simple patterns:
2448    ///
2449    /// ```
2450    /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2451    /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2452    ///
2453    /// let x: &[_] = &['1', '2'];
2454    /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2455    /// ```
2456    ///
2457    /// A more complex pattern, using a closure:
2458    ///
2459    /// ```
2460    /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2461    /// ```
2462    #[must_use = "this returns the trimmed string as a new slice, \
2463                  without modifying the original"]
2464    #[stable(feature = "trim_direction", since = "1.30.0")]
2465    pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2466    where
2467        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2468    {
2469        let mut j = 0;
2470        let mut matcher = pat.into_searcher(self);
2471        if let Some((_, b)) = matcher.next_reject_back() {
2472            j = b;
2473        }
2474        // SAFETY: `Searcher` is known to return valid indices.
2475        unsafe { self.get_unchecked(0..j) }
2476    }
2477
2478    /// Returns a string slice with all prefixes that match a pattern
2479    /// repeatedly removed.
2480    ///
2481    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2482    /// function or closure that determines if a character matches.
2483    ///
2484    /// [`char`]: prim@char
2485    /// [pattern]: self::pattern
2486    ///
2487    /// # Text directionality
2488    ///
2489    /// A string is a sequence of bytes. 'Left' in this context means the first
2490    /// position of that byte string; for a language like Arabic or Hebrew
2491    /// which are 'right to left' rather than 'left to right', this will be
2492    /// the _right_ side, not the left.
2493    ///
2494    /// # Examples
2495    ///
2496    /// ```
2497    /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2498    /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2499    ///
2500    /// let x: &[_] = &['1', '2'];
2501    /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2502    /// ```
2503    #[stable(feature = "rust1", since = "1.0.0")]
2504    #[deprecated(
2505        since = "1.33.0",
2506        note = "superseded by `trim_start_matches`",
2507        suggestion = "trim_start_matches"
2508    )]
2509    pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2510        self.trim_start_matches(pat)
2511    }
2512
2513    /// Returns a string slice with all suffixes that match a pattern
2514    /// repeatedly removed.
2515    ///
2516    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2517    /// function or closure that determines if a character matches.
2518    ///
2519    /// [`char`]: prim@char
2520    /// [pattern]: self::pattern
2521    ///
2522    /// # Text directionality
2523    ///
2524    /// A string is a sequence of bytes. 'Right' in this context means the last
2525    /// position of that byte string; for a language like Arabic or Hebrew
2526    /// which are 'right to left' rather than 'left to right', this will be
2527    /// the _left_ side, not the right.
2528    ///
2529    /// # Examples
2530    ///
2531    /// Simple patterns:
2532    ///
2533    /// ```
2534    /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2535    /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2536    ///
2537    /// let x: &[_] = &['1', '2'];
2538    /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2539    /// ```
2540    ///
2541    /// A more complex pattern, using a closure:
2542    ///
2543    /// ```
2544    /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2545    /// ```
2546    #[stable(feature = "rust1", since = "1.0.0")]
2547    #[deprecated(
2548        since = "1.33.0",
2549        note = "superseded by `trim_end_matches`",
2550        suggestion = "trim_end_matches"
2551    )]
2552    pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2553    where
2554        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2555    {
2556        self.trim_end_matches(pat)
2557    }
2558
2559    /// Parses this string slice into another type.
2560    ///
2561    /// Because `parse` is so general, it can cause problems with type
2562    /// inference. As such, `parse` is one of the few times you'll see
2563    /// the syntax affectionately known as the 'turbofish': `::<>`. This
2564    /// helps the inference algorithm understand specifically which type
2565    /// you're trying to parse into.
2566    ///
2567    /// `parse` can parse into any type that implements the [`FromStr`] trait.
2568
2569    ///
2570    /// # Errors
2571    ///
2572    /// Will return [`Err`] if it's not possible to parse this string slice into
2573    /// the desired type.
2574    ///
2575    /// [`Err`]: FromStr::Err
2576    ///
2577    /// # Examples
2578    ///
2579    /// Basic usage:
2580    ///
2581    /// ```
2582    /// let four: u32 = "4".parse().unwrap();
2583    ///
2584    /// assert_eq!(4, four);
2585    /// ```
2586    ///
2587    /// Using the 'turbofish' instead of annotating `four`:
2588    ///
2589    /// ```
2590    /// let four = "4".parse::<u32>();
2591    ///
2592    /// assert_eq!(Ok(4), four);
2593    /// ```
2594    ///
2595    /// Failing to parse:
2596    ///
2597    /// ```
2598    /// let nope = "j".parse::<u32>();
2599    ///
2600    /// assert!(nope.is_err());
2601    /// ```
2602    #[inline]
2603    #[stable(feature = "rust1", since = "1.0.0")]
2604    pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2605        FromStr::from_str(self)
2606    }
2607
2608    /// Checks if all characters in this string are within the ASCII range.
2609    ///
2610    /// # Examples
2611    ///
2612    /// ```
2613    /// let ascii = "hello!\n";
2614    /// let non_ascii = "Grüße, Jürgen ❤";
2615    ///
2616    /// assert!(ascii.is_ascii());
2617    /// assert!(!non_ascii.is_ascii());
2618    /// ```
2619    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2620    #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2621    #[must_use]
2622    #[inline]
2623    pub const fn is_ascii(&self) -> bool {
2624        // We can treat each byte as character here: all multibyte characters
2625        // start with a byte that is not in the ASCII range, so we will stop
2626        // there already.
2627        self.as_bytes().is_ascii()
2628    }
2629
2630    /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2631    /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2632    #[unstable(feature = "ascii_char", issue = "110998")]
2633    #[must_use]
2634    #[inline]
2635    pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2636        // Like in `is_ascii`, we can work on the bytes directly.
2637        self.as_bytes().as_ascii()
2638    }
2639
2640    /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2641    /// without checking whether they are valid.
2642    ///
2643    /// # Safety
2644    ///
2645    /// Every character in this string must be ASCII, or else this is UB.
2646    #[unstable(feature = "ascii_char", issue = "110998")]
2647    #[must_use]
2648    #[inline]
2649    pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2650        assert_unsafe_precondition!(
2651            check_library_ub,
2652            "as_ascii_unchecked requires that the string is valid ASCII",
2653            (it: &str = self) => it.is_ascii()
2654        );
2655
2656        // SAFETY: the caller promised that every byte of this string slice
2657        // is ASCII.
2658        unsafe { self.as_bytes().as_ascii_unchecked() }
2659    }
2660
2661    /// Checks that two strings are an ASCII case-insensitive match.
2662    ///
2663    /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2664    /// but without allocating and copying temporaries.
2665    ///
2666    /// # Examples
2667    ///
2668    /// ```
2669    /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2670    /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2671    /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2672    /// ```
2673    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2674    #[rustc_const_unstable(feature = "const_eq_ignore_ascii_case", issue = "131719")]
2675    #[must_use]
2676    #[inline]
2677    pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2678        self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2679    }
2680
2681    /// Converts this string to its ASCII upper case equivalent in-place.
2682    ///
2683    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2684    /// but non-ASCII letters are unchanged.
2685    ///
2686    /// To return a new uppercased value without modifying the existing one, use
2687    /// [`to_ascii_uppercase()`].
2688    ///
2689    /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2690    ///
2691    /// # Examples
2692    ///
2693    /// ```
2694    /// let mut s = String::from("Grüße, Jürgen ❤");
2695    ///
2696    /// s.make_ascii_uppercase();
2697    ///
2698    /// assert_eq!("GRüßE, JüRGEN ❤", s);
2699    /// ```
2700    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2701    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2702    #[inline]
2703    pub const fn make_ascii_uppercase(&mut self) {
2704        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2705        let me = unsafe { self.as_bytes_mut() };
2706        me.make_ascii_uppercase()
2707    }
2708
2709    /// Converts this string to its ASCII lower case equivalent in-place.
2710    ///
2711    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2712    /// but non-ASCII letters are unchanged.
2713    ///
2714    /// To return a new lowercased value without modifying the existing one, use
2715    /// [`to_ascii_lowercase()`].
2716    ///
2717    /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2718    ///
2719    /// # Examples
2720    ///
2721    /// ```
2722    /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2723    ///
2724    /// s.make_ascii_lowercase();
2725    ///
2726    /// assert_eq!("grÜße, jÜrgen ❤", s);
2727    /// ```
2728    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2729    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2730    #[inline]
2731    pub const fn make_ascii_lowercase(&mut self) {
2732        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2733        let me = unsafe { self.as_bytes_mut() };
2734        me.make_ascii_lowercase()
2735    }
2736
2737    /// Returns a string slice with leading ASCII whitespace removed.
2738    ///
2739    /// 'Whitespace' refers to the definition used by
2740    /// [`u8::is_ascii_whitespace`].
2741    ///
2742    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2743    ///
2744    /// # Examples
2745    ///
2746    /// ```
2747    /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2748    /// assert_eq!("  ".trim_ascii_start(), "");
2749    /// assert_eq!("".trim_ascii_start(), "");
2750    /// ```
2751    #[must_use = "this returns the trimmed string as a new slice, \
2752                  without modifying the original"]
2753    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2754    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2755    #[inline]
2756    pub const fn trim_ascii_start(&self) -> &str {
2757        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2758        // UTF-8.
2759        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
2760    }
2761
2762    /// Returns a string slice with trailing ASCII whitespace removed.
2763    ///
2764    /// 'Whitespace' refers to the definition used by
2765    /// [`u8::is_ascii_whitespace`].
2766    ///
2767    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2768    ///
2769    /// # Examples
2770    ///
2771    /// ```
2772    /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
2773    /// assert_eq!("  ".trim_ascii_end(), "");
2774    /// assert_eq!("".trim_ascii_end(), "");
2775    /// ```
2776    #[must_use = "this returns the trimmed string as a new slice, \
2777                  without modifying the original"]
2778    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2779    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2780    #[inline]
2781    pub const fn trim_ascii_end(&self) -> &str {
2782        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2783        // UTF-8.
2784        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
2785    }
2786
2787    /// Returns a string slice with leading and trailing ASCII whitespace
2788    /// removed.
2789    ///
2790    /// 'Whitespace' refers to the definition used by
2791    /// [`u8::is_ascii_whitespace`].
2792    ///
2793    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2794    ///
2795    /// # Examples
2796    ///
2797    /// ```
2798    /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
2799    /// assert_eq!("  ".trim_ascii(), "");
2800    /// assert_eq!("".trim_ascii(), "");
2801    /// ```
2802    #[must_use = "this returns the trimmed string as a new slice, \
2803                  without modifying the original"]
2804    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2805    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2806    #[inline]
2807    pub const fn trim_ascii(&self) -> &str {
2808        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2809        // UTF-8.
2810        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
2811    }
2812
2813    /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
2814    ///
2815    /// Note: only extended grapheme codepoints that begin the string will be
2816    /// escaped.
2817    ///
2818    /// # Examples
2819    ///
2820    /// As an iterator:
2821    ///
2822    /// ```
2823    /// for c in "❤\n!".escape_debug() {
2824    ///     print!("{c}");
2825    /// }
2826    /// println!();
2827    /// ```
2828    ///
2829    /// Using `println!` directly:
2830    ///
2831    /// ```
2832    /// println!("{}", "❤\n!".escape_debug());
2833    /// ```
2834    ///
2835    ///
2836    /// Both are equivalent to:
2837    ///
2838    /// ```
2839    /// println!("❤\\n!");
2840    /// ```
2841    ///
2842    /// Using `to_string`:
2843    ///
2844    /// ```
2845    /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
2846    /// ```
2847    #[must_use = "this returns the escaped string as an iterator, \
2848                  without modifying the original"]
2849    #[stable(feature = "str_escape", since = "1.34.0")]
2850    pub fn escape_debug(&self) -> EscapeDebug<'_> {
2851        let mut chars = self.chars();
2852        EscapeDebug {
2853            inner: chars
2854                .next()
2855                .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
2856                .into_iter()
2857                .flatten()
2858                .chain(chars.flat_map(CharEscapeDebugContinue)),
2859        }
2860    }
2861
2862    /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
2863    ///
2864    /// # Examples
2865    ///
2866    /// As an iterator:
2867    ///
2868    /// ```
2869    /// for c in "❤\n!".escape_default() {
2870    ///     print!("{c}");
2871    /// }
2872    /// println!();
2873    /// ```
2874    ///
2875    /// Using `println!` directly:
2876    ///
2877    /// ```
2878    /// println!("{}", "❤\n!".escape_default());
2879    /// ```
2880    ///
2881    ///
2882    /// Both are equivalent to:
2883    ///
2884    /// ```
2885    /// println!("\\u{{2764}}\\n!");
2886    /// ```
2887    ///
2888    /// Using `to_string`:
2889    ///
2890    /// ```
2891    /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
2892    /// ```
2893    #[must_use = "this returns the escaped string as an iterator, \
2894                  without modifying the original"]
2895    #[stable(feature = "str_escape", since = "1.34.0")]
2896    pub fn escape_default(&self) -> EscapeDefault<'_> {
2897        EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
2898    }
2899
2900    /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
2901    ///
2902    /// # Examples
2903    ///
2904    /// As an iterator:
2905    ///
2906    /// ```
2907    /// for c in "❤\n!".escape_unicode() {
2908    ///     print!("{c}");
2909    /// }
2910    /// println!();
2911    /// ```
2912    ///
2913    /// Using `println!` directly:
2914    ///
2915    /// ```
2916    /// println!("{}", "❤\n!".escape_unicode());
2917    /// ```
2918    ///
2919    ///
2920    /// Both are equivalent to:
2921    ///
2922    /// ```
2923    /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
2924    /// ```
2925    ///
2926    /// Using `to_string`:
2927    ///
2928    /// ```
2929    /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
2930    /// ```
2931    #[must_use = "this returns the escaped string as an iterator, \
2932                  without modifying the original"]
2933    #[stable(feature = "str_escape", since = "1.34.0")]
2934    pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
2935        EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
2936    }
2937
2938    /// Returns the range that a substring points to.
2939    ///
2940    /// Returns `None` if `substr` does not point within `self`.
2941    ///
2942    /// Unlike [`str::find`], **this does not search through the string**.
2943    /// Instead, it uses pointer arithmetic to find where in the string
2944    /// `substr` is derived from.
2945    ///
2946    /// This is useful for extending [`str::split`] and similar methods.
2947    ///
2948    /// Note that this method may return false positives (typically either
2949    /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
2950    /// zero-length `str` that points at the beginning or end of another,
2951    /// independent, `str`.
2952    ///
2953    /// # Examples
2954    /// ```
2955    /// #![feature(substr_range)]
2956    ///
2957    /// let data = "a, b, b, a";
2958    /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
2959    ///
2960    /// assert_eq!(iter.next(), Some(0..1));
2961    /// assert_eq!(iter.next(), Some(3..4));
2962    /// assert_eq!(iter.next(), Some(6..7));
2963    /// assert_eq!(iter.next(), Some(9..10));
2964    /// ```
2965    #[must_use]
2966    #[unstable(feature = "substr_range", issue = "126769")]
2967    pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
2968        self.as_bytes().subslice_range(substr.as_bytes())
2969    }
2970
2971    /// Returns the same string as a string slice `&str`.
2972    ///
2973    /// This method is redundant when used directly on `&str`, but
2974    /// it helps dereferencing other string-like types to string slices,
2975    /// for example references to `Box<str>` or `Arc<str>`.
2976    #[inline]
2977    #[unstable(feature = "str_as_str", issue = "130366")]
2978    pub fn as_str(&self) -> &str {
2979        self
2980    }
2981}
2982
2983#[stable(feature = "rust1", since = "1.0.0")]
2984impl AsRef<[u8]> for str {
2985    #[inline]
2986    fn as_ref(&self) -> &[u8] {
2987        self.as_bytes()
2988    }
2989}
2990
2991#[stable(feature = "rust1", since = "1.0.0")]
2992impl Default for &str {
2993    /// Creates an empty str
2994    #[inline]
2995    fn default() -> Self {
2996        ""
2997    }
2998}
2999
3000#[stable(feature = "default_mut_str", since = "1.28.0")]
3001impl Default for &mut str {
3002    /// Creates an empty mutable str
3003    #[inline]
3004    fn default() -> Self {
3005        // SAFETY: The empty string is valid UTF-8.
3006        unsafe { from_utf8_unchecked_mut(&mut []) }
3007    }
3008}
3009
3010impl_fn_for_zst! {
3011    /// A nameable, cloneable fn type
3012    #[derive(Clone)]
3013    struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3014        let Some(line) = line.strip_suffix('\n') else { return line };
3015        let Some(line) = line.strip_suffix('\r') else { return line };
3016        line
3017    };
3018
3019    #[derive(Clone)]
3020    struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3021        c.escape_debug_ext(EscapeDebugExtArgs {
3022            escape_grapheme_extended: false,
3023            escape_single_quote: true,
3024            escape_double_quote: true
3025        })
3026    };
3027
3028    #[derive(Clone)]
3029    struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3030        c.escape_unicode()
3031    };
3032    #[derive(Clone)]
3033    struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3034        c.escape_default()
3035    };
3036
3037    #[derive(Clone)]
3038    struct IsWhitespace impl Fn = |c: char| -> bool {
3039        c.is_whitespace()
3040    };
3041
3042    #[derive(Clone)]
3043    struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3044        byte.is_ascii_whitespace()
3045    };
3046
3047    #[derive(Clone)]
3048    struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3049        !s.is_empty()
3050    };
3051
3052    #[derive(Clone)]
3053    struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3054        !s.is_empty()
3055    };
3056
3057    #[derive(Clone)]
3058    struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3059        // SAFETY: not safe
3060        unsafe { from_utf8_unchecked(bytes) }
3061    };
3062}
3063
3064// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3065#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3066impl !crate::error::Error for &str {}