# ResNet in TensorFlow
Implemenation of [Deep Residual Learning for Image
Recognition](http://arxiv.org/abs/1512.03385). Includes a tool to use He et
al's published trained Caffe weights in TensorFlow.
MIT license. Contributions welcome.
## Goals
* Be able to use the pre-trained model's that [Kaiming He has provided for
Caffe](https://github.com/KaimingHe/deep-residual-networks). The `convert.py`
will convert the weights for use with TensorFlow.
* Implemented in the style of
[Inception](https://github.com/tensorflow/models/tree/master/inception/inception)
not using any classes and making heavy use of variable scope. It should be
easily usable in other models.
* Foundation to experiment with changes to ResNet like [stochastic
depth](https://arxiv.org/abs/1603.09382), [shared weights at each
scale](https://arxiv.org/abs/1604.03640), and 1D convolutions for audio. (Not yet implemented.)
* ResNet is fully convolutional and the implementation should allow inputs to be any size.
* Be able to train out of the box on CIFAR-10, 100, and ImageNet. (Implementation incomplete)
## Pretrained Model
To convert the published Caffe pretrained model, run `convert.py`. However
Caffe is annoying to install so I'm providing a download of the output of
convert.py:
[tensorflow-resnet-pretrained-20160509.tar.gz.torrent](https://raw.githubusercontent.com/ry/tensorflow-resnet/master/data/tensorflow-resnet-pretrained-20160509.tar.gz.torrent) 464M
## Notes
* This code depends on [TensorFlow git commit
cf7ce8](https://github.com/tensorflow/tensorflow/commit/cf7ce8a7879b6a7ba90441724ea3f8353917a515)
or later because ResNet needs 1x1 convolutions with stride 2. TF 0.8 is not new
enough.
* The `convert.py` script checks that activations are similiar to the caffe version
but it's not exactly the same. This is probably due to differences between how
TF and Caffe handle padding. Also preprocessing is done with color-channel means
instead of pixel-wise means.


YG亲测源码屋
- 粉丝: 473
最新资源
- 网络背景下高中英语教学的探索与实践优秀获奖科研论文.docx
- 网络营销基础与实践培训.pptx
- Postcat -Typescript资源
- 电子商务网络信息安全问题.doc
- 网络实验室设计方案.doc
- 基于Android平台的在线翻译软件设计与实现.pdf
- 互联网项目计划书.pdf
- 有限公司厂前区综合布线系统方案投标书技术部分.doc
- 网络支付模式案例分析ppt课件.ppt
- 网络工程规划与设计项目三-任务三-QuidView网络管理系统简介(可编辑ppt文档).ppt
- 电子商务网站建设的流程.doc
- 整合网络营销-合力创造价值.pptx
- 小区网络监控系统施工组织设计样本.doc
- 智能家居创业计划书(免费版).doc
- 基于单片机的出租车计价器系统设计.doc
- 江苏省高中化学教师网络培训测试答案模块4测试.doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈


