/* AUTO-GENERATED FILE. DO NOT MODIFY.
*
* This class was automatically generated by the
* java mavlink generator tool. It should not be modified by hand.
*/
package com.MAVLink.enums;
/**
* Commands to be executed by the MAV. They can be executed on user request, or as part of a mission script. If the action is used in a mission, the parameter mapping to the waypoint/mission message is as follows: Param 1, Param 2, Param 3, Param 4, X: Param 5, Y:Param 6, Z:Param 7. This command list is similar what ARINC 424 is for commercial aircraft: A data format how to interpret waypoint/mission data.
*/
public class MAV_CMD {
public static final int MAV_CMD_NAV_WAYPOINT = 16; /* Navigate to MISSION. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)| Acceptance radius in meters (if the sphere with this radius is hit, the MISSION counts as reached)| 0 to pass through the WP, if > 0 radius in meters to pass by WP. Positive value for clockwise orbit, negative value for counter-clockwise orbit. Allows trajectory control.| Desired yaw angle at MISSION (rotary wing)| Latitude| Longitude| Altitude| */
public static final int MAV_CMD_NAV_LOITER_UNLIM = 17; /* Loiter around this MISSION an unlimited amount of time |Empty| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
public static final int MAV_CMD_NAV_LOITER_TURNS = 18; /* Loiter around this MISSION for X turns |Turns| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
public static final int MAV_CMD_NAV_LOITER_TIME = 19; /* Loiter around this MISSION for X seconds |Seconds (decimal)| Empty| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location. Else, this is desired yaw angle| Latitude| Longitude| Altitude| */
public static final int MAV_CMD_NAV_RETURN_TO_LAUNCH = 20; /* Return to launch location |Empty| Empty| Empty| Empty| Empty| Empty| Empty| */
public static final int MAV_CMD_NAV_LAND = 21; /* Land at location |Abort Alt| Empty| Empty| Desired yaw angle| Latitude| Longitude| Altitude| */
public static final int MAV_CMD_NAV_TAKEOFF = 22; /* Takeoff from ground / hand |Minimum pitch (if airspeed sensor present), desired pitch without sensor| Empty| Empty| Yaw angle (if magnetometer present), ignored without magnetometer| Latitude| Longitude| Altitude| */
public static final int MAV_CMD_NAV_LAND_LOCAL = 23; /* Land at local position (local frame only) |Landing target number (if available)| Maximum accepted offset from desired landing position [m] - computed magnitude from spherical coordinates: d = sqrt(x^2 + y^2 + z^2), which gives the maximum accepted distance between the desired landing position and the position where the vehicle is about to land| Landing descend rate [ms^-1]| Desired yaw angle [rad]| Y-axis position [m]| X-axis position [m]| Z-axis / ground level position [m]| */
public static final int MAV_CMD_NAV_TAKEOFF_LOCAL = 24; /* Takeoff from local position (local frame only) |Minimum pitch (if airspeed sensor present), desired pitch without sensor [rad]| Empty| Takeoff ascend rate [ms^-1]| Yaw angle [rad] (if magnetometer or another yaw estimation source present), ignored without one of these| Y-axis position [m]| X-axis position [m]| Z-axis position [m]| */
public static final int MAV_CMD_NAV_FOLLOW = 25; /* Vehicle following, i.e. this waypoint represents the position of a moving vehicle |Following logic to use (e.g. loitering or sinusoidal following) - depends on specific autopilot implementation| Ground speed of vehicle to be followed| Radius around MISSION, in meters. If positive loiter clockwise, else counter-clockwise| Desired yaw angle.| Latitude| Longitude| Altitude| */
public static final int MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT = 30; /* Continue on the current course and climb/descend to specified altitude. When the altitude is reached continue to the next command (i.e., don't proceed to the next command until the desired altitude is reached. |Climb or Descend (0 = Neutral, command completes when within 5m of this command's altitude, 1 = Climbing, command completes when at or above this command's altitude, 2 = Descending, command completes when at or below this command's altitude. | Empty| Empty| Empty| Empty| Empty| Desired altitude in meters| */
public static final int MAV_CMD_NAV_LOITER_TO_ALT = 31; /* Begin loiter at the specified Latitude and Longitude. If Lat=Lon=0, then loiter at the current position. Don't consider the navigation command complete (don't leave loiter) until the altitude has been reached. Additionally, if the Heading Required parameter is non-zero the aircraft will not leave the loiter until heading toward the next waypoint. |Heading Required (0 = False)| Radius in meters. If positive loiter clockwise, negative counter-clockwise, 0 means no change to standard loiter.| Empty| Forward moving aircraft this sets exit xtrack location: 0 for center of loiter wp, 1 for exit location| Latitude| Longitude| Altitude| */
public static final int MAV_CMD_DO_FOLLOW = 32; /* Being following a target |System ID (the system ID of the FOLLOW_TARGET beacon). Send 0 to disable follow-me and return to the default position hold mode| RESERVED| RESERVED| altitude flag: 0: Keep current altitude, 1: keep altitude difference to target, 2: go to a fixed altitude above home| altitude| RESERVED| TTL in seconds in which the MAV should go to the default position hold mode after a message rx timeout| */
public static final int MAV_CMD_DO_FOLLOW_REPOSITION = 33; /* Reposition the MAV after a follow target command has been sent |Camera q1 (where 0 is on the ray from the camera to the tracking device)| Camera q2| Camera q3| Camera q4| altitude offset from target (m)| X offset from target (m)| Y offset from target (m)| */
public static final int MAV_CMD_NAV_ROI = 80; /* Sets the region of interest (ROI) for a sensor set or the vehicle itself. This can then be used by the vehicles control system to control the vehicle attitude and the attitude of various sensors such as cameras. |Region of intereset mode. (see MAV_ROI enum)| MISSION index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple ROI's)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| */
public static final int MAV_CMD_NAV_PATHPLANNING = 81; /* Control autonomous path planning on the MAV. |0: Disable local obstacle avoidance / local path planning (without resetting map), 1: Enable local path planning, 2: Enable and reset local path planning| 0: Disable full path planning (without resetting map), 1: Enable, 2: Enable and reset map/occupancy grid, 3: Enable and reset planned route, but not occupancy grid| Empty| Yaw angle at goal, in compass degrees, [0..360]| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
public static final int MAV_CMD_NAV_SPLINE_WAYPOINT = 82; /* Navigate to MISSION using a spline path. |Hold time in decimal seconds. (ignored by fixed wing, time to stay at MISSION for rotary wing)| Empty| Empty| Empty| Latitude/X of goal| Longitude/Y of goal| Altitude/Z of goal| */
public static final int MAV_CMD_NAV_VTOL_TAKEOFF = 84; /* Takeoff from ground using VTOL mode |Empty| Empty| Empty| Yaw angle in degrees| Latitude| Longitude| Altitude| */
public static final int MAV_CMD_NAV_VTOL_LAND = 85; /* Land using VTOL mode |Empty| Empty| Empty| Yaw angle in degrees| Latitude| Longitude| Altitude| */
public static final int MAV_CMD_NAV_GUIDED_ENABLE = 92; /* hand control over to an external controller |On