# Tensorflow Object Detection API
Creating accurate machine learning models capable of localizing and identifying
multiple objects in a single image remains a core challenge in computer vision.
The TensorFlow Object Detection API is an open source framework built on top of
TensorFlow that makes it easy to construct, train and deploy object detection
models. At Google we’ve certainly found this codebase to be useful for our
computer vision needs, and we hope that you will as well.
<p align="center">
<img src="g3doc/img/kites_detections_output.jpg" width=676 height=450>
</p>
Contributions to the codebase are welcome and we would love to hear back from
you if you find this API useful. Finally if you use the Tensorflow Object
Detection API for a research publication, please consider citing:
```
"Speed/accuracy trade-offs for modern convolutional object detectors."
Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z,
Song Y, Guadarrama S, Murphy K, CVPR 2017
```
\[[link](https://arxiv.org/abs/1611.10012)\]\[[bibtex](
https://scholar.googleusercontent.com/scholar.bib?q=info:l291WsrB-hQJ:scholar.google.com/&output=citation&scisig=AAGBfm0AAAAAWUIIlnPZ_L9jxvPwcC49kDlELtaeIyU-&scisf=4&ct=citation&cd=-1&hl=en&scfhb=1)\]
## Maintainers
* Jonathan Huang, github: [jch1](https://github.com/jch1)
* Vivek Rathod, github: [tombstone](https://github.com/tombstone)
* Derek Chow, github: [derekjchow](https://github.com/derekjchow)
* Chen Sun, github: [jesu9](https://github.com/jesu9)
* Menglong Zhu, github: [dreamdragon](https://github.com/dreamdragon)
## Table of contents
Before You Start:
* <a href='g3doc/installation.md'>Installation</a><br>
Quick Start:
* <a href='object_detection_tutorial.ipynb'>
Quick Start: Jupyter notebook for off-the-shelf inference</a><br>
* <a href="g3doc/running_pets.md">Quick Start: Training a pet detector</a><br>
Setup:
* <a href='g3doc/configuring_jobs.md'>
Configuring an object detection pipeline</a><br>
* <a href='g3doc/preparing_inputs.md'>Preparing inputs</a><br>
Running:
* <a href='g3doc/running_locally.md'>Running locally</a><br>
* <a href='g3doc/running_on_cloud.md'>Running on the cloud</a><br>
Extras:
* <a href='g3doc/detection_model_zoo.md'>Tensorflow detection model zoo</a><br>
* <a href='g3doc/exporting_models.md'>
Exporting a trained model for inference</a><br>
* <a href='g3doc/defining_your_own_model.md'>
Defining your own model architecture</a><br>
* <a href='g3doc/using_your_own_dataset.md'>
Bringing in your own dataset</a><br>
## Getting Help
Please report bugs to the tensorflow/models/ Github
[issue tracker](https://github.com/tensorflow/models/issues), prefixing the
issue name with "object_detection". To get help with issues you may encounter
using the Tensorflow Object Detection API, create a new question on
[StackOverflow](https://stackoverflow.com/) with the tags "tensorflow" and
"object-detection".
## Release information
### August 11, 2017
We have released an update to the [Android Detect
demo](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android)
which will now run models trained using the Tensorflow Object
Detection API on an Android device. By default, it currently runs a
frozen SSD w/Mobilenet detector trained on COCO, but we encourage
you to try out other detection models!
<b>Thanks to contributors</b>: Jonathan Huang, Andrew Harp
### June 15, 2017
In addition to our base Tensorflow detection model definitions, this
release includes:
* A selection of trainable detection models, including:
* Single Shot Multibox Detector (SSD) with MobileNet,
* SSD with Inception V2,
* Region-Based Fully Convolutional Networks (R-FCN) with Resnet 101,
* Faster RCNN with Resnet 101,
* Faster RCNN with Inception Resnet v2
* Frozen weights (trained on the COCO dataset) for each of the above models to
be used for out-of-the-box inference purposes.
* A [Jupyter notebook](object_detection_tutorial.ipynb) for performing
out-of-the-box inference with one of our released models
* Convenient [local training](g3doc/running_locally.md) scripts as well as
distributed training and evaluation pipelines via
[Google Cloud](g3doc/running_on_cloud.md).
<b>Thanks to contributors</b>: Jonathan Huang, Vivek Rathod, Derek Chow,
Chen Sun, Menglong Zhu, Matthew Tang, Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, Jasper Uijlings,
Viacheslav Kovalevskyi, Kevin Murphy
没有合适的资源?快使用搜索试试~ 我知道了~
ROS机器人开发实践-源码 ros-exploring-master.zip

共840个文件
py:222个
launch:87个
pyc:77个

0 下载量 10 浏览量
2024-07-07
14:36:18
上传
评论
收藏 146.17MB ZIP 举报
温馨提示
ROS机器人开发实践-源码 ros_exploring-master.zip 文件夹名 描述 ros_primary ROS基础功能 robot_mrobot mrobot相关的功能包 robot_marm marm相关的功能包 robot_perception 机器人感知相关的功能包 ros_advanced ROS进阶功能 robot_learning 机器学习相关的功能包 ros2 ROS2功能包(不能放置在ROS1的工作空间下,否则会报错) ROS机器人开发实践-源码 ros_exploring-master.zip 文件夹名 描述 ros_primary ROS基础功能 robot_mrobot mrobot相关的功能包 robot_marm marm相关的功能包 robot_perception 机器人感知相关的功能包 ros_advanced ROS进阶功能 robot_learning 机器学习相关的功能包 ros2 ROS2功能包(不能放置在ROS1的工作空间下,否则会报错)
资源推荐
资源详情
资源评论



























收起资源包目录





































































































共 840 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9
资源评论


枫蜜柚子茶
- 粉丝: 9082
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 学习内容 1 计算机的特性与组成 2 计算机的发展简史和计算机的应.pptx
- 计算机体系结构发展.pptx
- 旅游信息化现状调查调研论文报告汇报.docx
- 财务信息化建设基本情况调查表.xls
- 浅析网络流行语“翻船体”获奖科研报告论文.docx
- 嵌入式系统在智能家居中的研究与应用.doc
- 浅析大数据信息安全等级保护.pdf
- 电子监察和网上审批系统软件需求规格说明书环保局模板.doc
- 油气田勘探开发中计算机技术的应用.pdf
- 信息化形势下的医药产业.ppt
- 电子商务创业培训方案.docx
- 纺织行业管理信息化方案.doc
- 应用软件开发项目管理流程--zzls001.pptx
- 2022年PMP项目经理认证.doc
- 2022年计算机应用基础试题知识点.doc
- 网络客服专员类实习报告.doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
