<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
English | [ç®ä½ä¸æ](.github/README_cn.md)
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-github.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-linkedin.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-twitter.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.producthunt.com/@glenn_jocher" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-producthunt.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-youtube.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.facebook.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-facebook.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/master/social/logo-social-instagram.png" width="2%" alt="" /></a>
</div>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
[**Python>=3.7.0**](https://www.python.org/) environment, including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details open>
<summary>Inference</summary>
YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5n - yolov5x6, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
largest `--batch-size` possible, or pass `--batch-size -1` for
YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
```bash
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
yolov5s 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
- [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)Â ð RECOMMENDED
- [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
- [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
- [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) ð NEW
- [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) ð
- [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
- [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
- [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
- [Hyperpar
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
YOLOv5 + Flask + Vue实现基于深度学习算法的垃圾检测系统源码+数据库(高分项目).zip技术特性 深度学习 YOLOv5:高效、准确的目标检测算法,实时识别检测图像和视频中的各种对象 PyTorch:机器学习框架,以动态计算图为基础,具有灵活性和易用性 OpenCV:计算机视觉库,提供了丰富的图像和视频处理功能 前端 Vue3:采用 Vue3 + script setup 最新的 Vue3 组合式 API Element Plus:Element UI 的 Vue3 版本 Pinia: 类型安全、可预测的状态管理库 Vite:新型前端构建工具 Vue Router:路由 TypeScript:JavaScript 语言的超集 PNPM:更快速的,节省磁盘空间的包管理工具 Scss:和 Element Plus 保持一致 CSS 变量:主要控制项目的布局和颜色 ESlint:代码校验 Prettier:代码格式化 Axios:发送网络请求 UnoCSS:具有高性能且极具灵活性的即时原子化 CSS 引擎 注释:各个配置项都写有尽可能详细的注释 兼容移动端: 布局兼容移动端
资源推荐
资源详情
资源评论




























收起资源包目录





































































































共 475 条
- 1
- 2
- 3
- 4
- 5
资源评论


盈梓的博客
- 粉丝: 1w+
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- modelcontextprotocol_kotlin-sdk-Kotlin资源
- nexfly-AI人工智能资源
- cpp-tbox-硬件开发资源
- 射频功率放大器的研究与设计.pdf
- 基于 PyQt5 的轮廓获取、人脸识别与图像分类系统
- MatterMap-移动应用开发资源
- GOSP-单片机开发资源
- 电子工程基于SAR ADC的抗混叠巴特沃斯低通滤波器设计:滤波器电路及参数计算方法
- 全双工485通信系统原理示意图
- EasyDL 定制化图像识别之图片分类功能
- wnmp PHP集成环境-PHP资源
- layui-JavaScript资源
- ERD-ONLINE-SQL资源
- WeBlog-毕业设计资源
- ACM算法竞赛-ACM资源
- Mathematical Modeling-美赛资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
