# Ovarian Subtype Cancer Classification System
This project implements a deep learning-based classification system for identifying different subtypes of ovarian cancer. The system utilizes a ResNet model trained on a dataset obtained from Kaggle. It is deployed as a web application using Streamlit for ease of testing and evaluation.
## Features
- Classifies ovarian cancer subtypes into five categories: EC, CC, LGSC, MC, HGSC.
- Utilizes a pre-trained ResNet model for image classification.
- Provides a user-friendly interface for uploading images and viewing classification results.
- Enables easy testing and evaluation of the classification system.
## Dataset
The dataset used for training the model was obtained from Kaggle. It contains images of ovarian tissue samples labeled with one of the five ovarian cancer subtypes: EC (Endometrioid Carcinoma), CC (Clear Cell Carcinoma), LGSC (Low-Grade Serous Carcinoma), MC (Mucinous Carcinoma), and HGSC (High-Grade Serous Carcinoma).
link: <https://www.kaggle.com/datasets/sunilthite/ovarian-cancer-classification-dataset/data>
## Model Architecture
The classification system employs a ResNet model architecture for image classification. ResNet (Residual Neural Network) is a deep learning architecture known for its effectiveness in handling deep networks and addressing the vanishing gradient problem.
## Deployment
The classification system is deployed as a web application using Streamlit. Streamlit provides an intuitive and interactive interface for users to upload images, trigger classification, and view the results. The deployment process ensures accessibility and ease of use for testing and evaluation purposes.
## Usage
To use the classification system:
1. Clone the repository to your local machine.
2. Install the required dependencies specified in the `requirements.txt` file.
3. Run the Streamlit application using the command `streamlit run mainapp.py`.
4. Upload an image containing ovarian tissue sample.
5. View the classification result displayed on the web application.

Meta.Qing
- 粉丝: 2w+
最新资源
- 数据库-学生学籍管理系统(1).doc
- 刍议互联网+时代高校篮球教学改革的创新思路(1).docx
- 跨境电子商务B2C模式下消费者权益保护问题研究(1).docx
- 南京朗坤软件有限公司简介(1).docx
- SQL数据库简答题(1).doc
- 浅谈高校教师信息化教学能力的提升与探究(1)(1).docx
- 资料青少年python一级真题21-05.doc
- 中国联通淄博市分公司信息化固定资产管理办法(1)(1).doc
- PLC控制的交通灯论文设计论文(1)(1).doc
- 英文文献及中文翻译-ASP.NET-概述ASP.NET-Overview(1).doc
- 2019年计算机总结与展望(1).doc
- 自动化仪表控制系统管理制度和维修制度(1).doc
- 热门软件服务合同范本(1).doc
- 社会突发事件下初中音乐教学互联网+模式探讨(1).docx
- 软件测试---NextDate函数---测试用例详解省名师优质课赛课获奖课件市赛课一等奖课件(1).ppt
- 浅谈计算机软件工程的管理与应用(1).doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈


