

NEW AND NOTEWORTHY

www.springsource.com

	

	

	

	

	

SpringSource
Tool Suite

2.9.2

- New and Noteworthy -

	

	

	

	

	

	

	

	

	

Martin Lippert 2.9.2 May 24, 2012 Updated for 2.9.2.RELEASE

NEW AND NOTEWORTHY

www.springsource.com

ENHANCEMENTS – 2.9.2
General Updates
vFabric tc Server 2.7.0
STS ships now with support for and the distribution of the latest vFabric tc Server Developer
Edition 2.7.0.

Fixed Bugs
• IDE-1246: An internal error occurred during: "Updating Maven Configuration". NPE in

RooProjectConfigurator.doConfigure
• IDE-1244: RequestMappings does not include mappings defined on interfaces
• IDE-1243: Search Pointcut Matches returns no results
• STS-2592: RequestMappings and Controllers do not appear in the Spring Explorer view
• STS-2571: update equinox weaving for AJDT to latest from Eclipse 3.8 streams
• STS-2569: NullPointerException in LegacyProjectChecker
• STS-2563: Grails 2.0.3 plugin update
• STS-2553: update tc Server integration for upcoming tc Server 2.7
• STS-2493: Spring nature not automatically added when project has spring-core

dependency
• STS-2490: Grails Plugin Manager will not launch
• STS-2274: No property tester contributes a property

org.springframework.ide.eclipse.beans.core.model.isInfrastructureBean to type class
org.springframework.ide.eclipse.beans.core.internal.model.Bean

NEW AND NOTEWORTHY

www.springsource.com

ENHANCEMENTS – 2.9.1
General Updates
vFabric tc Server 2.6.4
STS ships now with the latest vFabric tc Server Developer Edition 2.6.4.

Fixed Bugs
• STS-2271: For Spring Integration: Add Visual Support for Payload Enricher
• STS-2498: gateways should display connections to error-channels
• STS-2497: gateways don't display transitions defined in method sub-elements
• STS-2488: When using free-form layout the conector lines cannot be predictably drawn
• STS-2501: Chain elements in SI graphs are transposed in manual layout mode
• IDE-1239: Cant add set to actions in Graphical Editor of Web Flow
• IDE-1232: SpringSource Tool Suite Content Assist Slow, Lags or Hangs
• STS-2502: can't build/deploy mvc sample

NEW AND NOTEWORTHY

www.springsource.com

ENHANCEMENTS – 2.9.0
General Updates
Eclipse Indigo SR2 (3.7.2)
STS now ships on top of the latest Eclipse Indigo SR2 (3.7.2) release.

vFabric tc Server 2.6.3
STS ships now with the latest vFabric tc Server Developer Edition 2.6.3.

Spring Roo 1.2.1
STS updated the distributed version of Spring Roo to the latest Spring Roo 1.2.1 release.

Spring 3.1.1
The integrated Spring version that STS is using internally got updated to Spring 3.1.1.

Maven Integration for Eclipse – WTP Extension 0.15
The STS distribution now ships with the WTP integration for m2e in version 0.15.

Grails 2.0.1
The Grails version that you can get from the extension install has been upgraded to 2.0.1.

AJDT
The AJDT version included in STS now includes an early build of AspectJ 1.7.0.

Groovy-Eclipse
The Groovy-Eclipse version available from the dashboard is the 2.6.1 release.

Spring Development Tools
Improved Spring 3.1 Profile Support
In this release we added content assist for selecting profiles to be included while defining a
Spring Beans config set. Currently the content assist only works on profiles that are defined in a
Spring Beans config xml file, but we are working on making this work with profiles defined
through Java annotations as well.

NEW AND NOTEWORTHY

www.springsource.com

“Serve modules without publishing” now available for tc Server
The “Serve modules without publishing” option can now be enabled in the tc Server editor.
When selected web content is directly served from the workspace not requiring publishing.

Improvements to vFabric tc Server instance creation wizard
We improved the internal workings of the wizard to create new tc Server instances to avoid
problems that we observed in the past that often resulted in instances not being created correctly.
Aside of that we also added the ability to take a look at the readme for the instance templates
while choosing them within the wizard.

NEW AND NOTEWORTHY

www.springsource.com

Support for Roo 1.2 packaging options
The “New Roo Project” Wizard adds support for specifying the project packaging. This is
analogous to the "--packaging" option of Roo's "project" shell command, introduced in Roo 1.2

NEW AND NOTEWORTHY

www.springsource.com

Support for multi module Roo projects
STS is now aware of multi module Roo projects and launches the the Roo shell for the parent
project when importing a multi-module Roo project in STS. The Roo shell will create hyperlinks to
resources within modules and open the resource in the Eclipse editor when clicked.

NEW AND NOTEWORTHY

www.springsource.com

Support for Spring Integration 2.1
This releases adds support for Spring Integration 2.1.0. Visualizations have been added for the
new SI-Gemfire, SI-Redis, and SI-RMI projects. All existing Spring Integration projects have been
updated to support new visualization elements. Below you can see visual editing support for the
new stored procedure adapters in SI-JDBC.

NEW AND NOTEWORTHY

www.springsource.com

Spring Integration 2.1 Project Templates
SpringSource Tool Suite 2.9.0 now ships with templating support for Spring Integration. Thus,
when creating a new project using the Spring Template Project Wizard, you can now select
between the following 3 new Spring Integration targeted templates:

• Spring Integration Project (Standalone) - Simple
• Spring Integration Project (Standalone) - File
• Spring Integration Project (War)

The “Simple” template creates a basic Spring Integration project, which runs as a standalone
Java application, using only core Spring Integration components. In order to illustrate File polling
capabilities, the “File” template uses additional components to poll file directories as well as to
route those files. Lastly, the “War” template allows users to easily create basic Spring Integration
projects that are targeted to run in servlet containers as part of a WAR deployment. For
illustration purposes the “War” template uses the Spring Integration Twitter adapter.

Grails Development Tools
Extensions Page
The version of Grails available from the extensions page is now 2.0.1. Related to that the
version of Groovy installed by default from the extensions page has been upgraded from 1.7 to
1.8.

Better type inferencing inside of Grails unit tests
Inside of unit tests for controllers, STS now supports the complete unit test DSL in content assist
and type inferencing. For example below, you can see that the special controller properties like
params, actionName, and request are available. Furthermore, all of the relevant properties and
methods from ControllerTestMixin are available in content assist.

NEW AND NOTEWORTHY

www.springsource.com

DSL Support
Named queries

STS now has full support for the named query DSL:

http://grails.org/doc/latest/ref/Domain%20Classes/namedQueries.html.

First, for defining named queries, STS provides full content assist and type inferencing inside of
the namedQuery static field of a domain class. For example, hovering over a reference to "gt"
will bring up the JavaDoc for the "gt" method of HibernateCriteriaBuilder (and pressing F3 will
navigate to the definition of "gt"):

And it is possible to reference other named queries inside the definition of one:

NEW AND NOTEWORTHY

www.springsource.com

Second, STS also provides full inferencing and content assist support for using named queries.
Here are some examples that are taken from the Grails user guide, see:

http://grails.org/doc/latest/ref/Domain%20Classes/namedQueries.html).

All of these examples are fully supported by content assist and type inferencing:

Note that due to Grails bug http://jira.grails.org/browse/GRAILS-8387, the return values of
named query methods like "list", "get", and "findWhere" are all dynamically typed and so do not
provide any useful type inferencing in the editor.

Case insensitive dynamic finder content assist

Dynamic finders can now be invoked in content assist in a case insensitive way:

NEW AND NOTEWORTHY

www.springsource.com

Grails aware search
Searching references to controller types and their action fields or methods is now 'grails aware'
(meaning it understands and finds references if made via certain Grails specific idioms. Below
are some examples of the recognized idioms:

Inside controllers:

render(controller: "song", action: "edit")

This counts as a reference to SongController and SongController.edit

redirect(view: "song")

This counts as a reference to SongController

Inside gsp files

<g:link controller='song' action='list'>

This counts as references to SongController and SongController.list

NEW AND NOTEWORTHY

www.springsource.com

Inside URL mappings:

"/product"(controller:"product", action:"list")

This counts as a reference to ProductController and ProductController.list

"/showPeople" {

 controller = 'person' // This counts as a reference to PersonController

 action = 'list' // This counts as a reference to PersonController.list

}

name personList: "/showPeople" {

 controller = 'person' // counts as a reference to PersonController

}

"/product/$id"(controller:"product") { // counts a reference to ProductController

 action = [GET:"show", PUT:"update", DELETE:"delete", POST:"save"] //Counts as
references to show, update, delete and save in ProductController

}

NEW AND NOTEWORTHY

www.springsource.com

Grails aware refactoring
The same idioms as described in the previous section are also recognized and replaced
appropriately when performing rename refactorings, renaming either:

• a controller class
• an action method or fields in a controller class.
• a gsp file (because it triggers a correspondding action rename).

In contrast with the searching support, which is new in STS 2.9.0, the refactoring functionality
existed already in STS 2.8.0. However, the set of recognized idioms has been expanded. The
following idioms are newly recognized:

• redirect | render idioms are now recognized for controller type renames (previously they
were only recognized for action renames)

• references inside URLMappings (see examples above)

NEW AND NOTEWORTHY

www.springsource.com

Grails 2.0 support
Where queries

Grails 2.0 has introduced the notion of where queries.

See http://grails.org/doc/2.0.0.RC2/guide/GORM.html#whereQueries.

STS provides editing support for this mini-DSL. For example, you can define where queries and
build one query on top of another:

Hovering and navigation of fields work as expected.

NEW AND NOTEWORTHY

www.springsource.com

JavaDoc and source code for Gorm methods in domain classes

Source code is now included with the Grails distribution for the gorm-datastore jars. This means
that Javadoc for gorm methods like "attach" and "validate" are available for hovers:

DSL support in Grails unit and integration tests

STS now has much improved support for the Grails unit and integration test mini-DSL. For
example, the @TestFor and @Mock annotations are used to populate implicit fields inside of your
test class:

Controller action return values are available where appropriate:

And the various mixin classes in unit tests are recognized in the editor, as described here:

http://grails.org/doc/2.0.0/guide/testing.html#unitTesting

Here you can see some of the ControllerUnitTestMixin fields and methods being referenced:

NEW AND NOTEWORTHY

www.springsource.com

As expected, pressing F3 will navigate to the definition of any of these fields in the appropriate
mixin class.

See STS-2222, STS-2225, and STS-2235 for more information. Also, please note that bug STS-
2319 is still open. If your controller action contains a redirect, STS will not be able to infer the
return values of the action.

Groovy-Eclipse

STS 2.9.0 provides Groovy-Eclipse 2.6.1 from the extensions page. This release includes a
number of enhancements, described below:

Split assignment/declaration quickfix
The split assignment and split declaration quickfixes are available on any assignment or
declaration expression and works like this:

becomes this:

Swap operands quickfix

The swap operands quickfix reorders the left and right sides of binary expressions. This code:

becomes this:

NEW AND NOTEWORTHY

www.springsource.com

Full Javadoc capability for inferencing suggestions and DSLDs
It is now possible to use Javadoc tags inside of inferencing suggestions. In the inferencing
suggestion window (available from Preferences > Groovy > Inferencing Suggestions, or from a
quick assist in the editor CTRL+1), you can insert full Javadoc comments inside of the Doc text
box:

Which will then get displayed in hovers as this:

NEW AND NOTEWORTHY

www.springsource.com

Similarly, it is possible to use Javadoc tags inside of DSLD doc tags. For example, this gives a
similar effect to above:

contribute(currentType("Analyzer")) {
 method name:"analyzeThis", type:String, params:[data:String, depth,
Integer], doc:"""
 Analyzes some data to the given depth.
 @author Andrew Eisenberg
 @since 2.6.1
 @param data the data to analyze
 @param depth the depth to analyze to
 @return the result of analyzing the data
"""

Note: At this point, @link tags are not generating a proper hyperlink.

Hover and navigation in constructors with named arguments
It is now possible to hover over and navigate to field references used as named parameters in
default constructor invocations:

Better content assist for missing methods
Content assist inside of a class body shows all overridable methods. This has been available
since Groovy 2.0. Now, we have improved this support and the resulting content assist text will
appropriately include argument names and types, will organize imports, and add a doc stub
inside the method body if configured to do so.

NEW AND NOTEWORTHY

www.springsource.com

For example, this:

becomes this:

Code select and inferencing for static imports
We have done significant work around supporting static imports. References to static imports
now allow navigation, static imports are now appropriately renamed during refactoring, and
they are found during search.

Editor option to turn off highlighting for dollar slashy strings
Groovy 1.8 introduced dollar slashy strings (link) that allow the specification of multi-line strings
like this: $/ … /$. However, some users found problems with files that made heavy use of
regular expressions. For example, in this file the space between the $/ and /$ is incorrectly
interpreted as a multi-line string:

It is now possible to disable slashy strings by going to the Preferences > Groovy > Editor
preferences page:

And the file is now highlighted correctly (the underlines are expected):

NEW AND NOTEWORTHY

www.springsource.com

You must close and re-open files before this change comes into effect.

Per-project script folders
Groovy-Eclipse now allows the specification of script folders on a per-project basis. You can
control script folders in the Groovy Compiler project properties page:

When selecting “Enable project specific settings”, the script folder settings for an individual
project override the workspace settings.

Script folders describe locations in your project that contain Groovy scripts. Groovy scripts should
not be compiled into .class files and they may or may not be copied to the output folder.

Inferring type of overloaded operators
Groovy-Eclipse will now correctly infer the types of overloaded binary and unary operators. For
example, in the following screenshot, you can see that val is inferred to be a member of the Tree
class. This is because the inferencing engine has determined that the + operation is overloaded
and has a return type of Tree:

NEW AND NOTEWORTHY

www.springsource.com

Also, inside of DSLD scripts, method contributions can be used to overload an operator in an
editor. Something like this script would have the same effect as above:
contribute(currentType(‘pack.Tree’)) {

 method name: ‘plus’, params: [other:’pack.Tree’],

 type:’pack.Tree’

}

Better inferencing of list and map literals
Groovy-Eclipse now uses more precise techniques to infer the types of list and map literals.
Previously, the types of list and map literals were determined by the static type of the first element
of the collection. Now, as you can see in the screenshot below, Groovy-Eclipse uses the inferred
types of the list and map elements to build the type of the collection:

Move Package and change package declaration quick fixes
Groovy-Eclipse now shows quick fixes for invalid package declarations. When hovering over an
error marker for an invalid package declaration, there are two quick fixes available: Move
compilation unit, and Change package declaration. See below for an example:

The behavior is identical to the quick fixes of the same name available in the Java editor.
Moving the compilation unit will not only move the file, but also update all appropriate
references to the package. Changing the package declaration will simply change the text at the
beginning of the file so that it matches its current directory.

NEW AND NOTEWORTHY

www.springsource.com

Convert to closure now available from refactoring menu

The Convert to closure and Convert to method quick assists are now available from the context
menu under the Groovy Refactor section:

Also, the keybindings are Alt-G F and ALT-G M respectively. (patch from Geoff Denning)

Search and refactoring
Search and refactoring of generated getters, setters, and properties

Groovy-Eclipse now allows you to search for references to generated getters, setters and
properties. For example, searching for references to a Groovy property (such as age in this
example) will find all references to getAge and setAge in both Java and Groovy files:

Similarly, references Java to getters and setters can be found inside of Groovy files even when
they are referenced as properties. In this example, the class Person is defined in Java with explicit
getters and setters. Searching for references on setAge will return references to the generated
age property in the Groovy script:

NEW AND NOTEWORTHY

www.springsource.com

This also works for refeactoring. As in the first example, when Person is defined as a Groovy
class, we can rename 'name' to 'fullName' and the synthetic getters and setters will be renamed
in both Java and Groovy files:

NEW AND NOTEWORTHY

www.springsource.com

Note that you will sometimes see warnings during refactoring like this:

This warning comes about since some of the synthetic references in Java files cannot be
determined to be precise by the Java search engine. By the nature of the language, refactoring
of Groovy code can never be as precise as Java code is. It is always recommended to view the
preview page before executing a refactoring.

For more information on this feature, see issues GRECLIPSE-1204, GRECLIPSE-1010, and
GRECLIPSE-1205.

Better default parameter support
For this release, we have done significant work with searching for and refactoring methods with
default parameters. Now, searching for references to a method that has default parameters will
locate all references to that method, regardless of how many parameters that reference uses:

Similarly, rename refactor will correctly rename all references no matter how many parameters
are used:

NEW AND NOTEWORTHY

www.springsource.com

For more information on this feature, see issues GRECLIPSE-1255, and GRECLIPSE-1233.

Better extract local variable refactoring
Extract local variable is now more precise as to where the variable is extracted to. Now, the
variable is placed in the statement immediately preceeding the variables first use. See this
example, where 'map.one' is extracted to a variable and placed inside the enclosing closure:

Parser recovery

Further recovery enhancements have been made to the Groovy Parser. This enables it to cope
better with malformed (unfinished) code and that enables content assist to offer suggestions in
more places than before. Here are a couple of examples of the latest improvements:

NEW AND NOTEWORTHY

www.springsource.com

These two situations show that correct content assist options are available even though there is a
missing close paren:

It is now possible to work on the i f condition without the then block {...} being defined yet:

It will even work if the trailing paren of the if condition isn't specified yet:

Content assist
Suppressing DGMs (default groovy methods) from content assist

It is now possible to selectively suppress DGMs from cluttering up content assist. There is a new
Preferences -> Groovy -> Content Assist preferences page:

NEW AND NOTEWORTHY

www.springsource.com

This page contains a list of names of DGMs to be filtered from content assist. You can add and
remove names individually by clicking on 'New..." and "Remove". Alternatively, you can edit the
entire list at once by clicking on "Add multiple...". This opens a dialog box with a multi-line text
editor where you can easily add and remove multiple entries at once. See here:

As expected, when in the editor, entries that have been suppressed no longer appear in content
assist. In this case, "each" has been filtered, but "eachWithIndex" has not:

NEW AND NOTEWORTHY

www.springsource.com

Support for named arguments in constructors

When a Groovy class has no explicit constructor, it is possible to build an instance of the class
using named arguments as described here (http://groovy.codehaus.org/Groovy+Beans).
Groovy-Eclipse now provides content assist support for this kind of constructor call. In the
following example code, performing content assist inside of the parens of the constructor call will
bring up all remaining available arguments:

And, like all parameters applied in content assist, Groovy-Eclipse guesses some likely values for
the parameter:

Note: named parameter content assist will only be available if there is no prefix. I.e., it will be
available here:

new Customer(/**/)

but not here:

new Customer(na/**/)

 (where /**/ is the location where content assist is invoked)

For more information, see issue GRECLIPSE-1228.

Better content assist for methods with closure arguments

When performing content assist on a method and the last parameter is a closure, the proposal
will be applied with an opening curly "{", but no closing curly as here:

NEW AND NOTEWORTHY

www.springsource.com

As a user, you can choose to delete this and add your own content, or you can press enter and
the closure will be completed for you:

For more information, see issue GRECLIPSE-1232.

Better content assist in closures

When inside of a closure, methods defined in the enclosing class are now available in content
assist (GRECLIPSE-1114):

Similarly, the relevant fields like "closure" and "owner" are now available in content assist when
inside a closure (GRECLIPSE-1267):

Quick fixes and Quick assists
Thanks to some help at a Groovy-Eclipse hackathon, we now have quite a few quick fixes and
quick assists. Quick fixes are available based on a particular error marker in the editor. And
quick assists are available based on the structure of the syntax tree.

Both quick fixes and quick assists can be invoked by pressing CTRL-1 (or CMD-1 in Mac) on a
selection in the editor.

Add unimplemented methods/Make class abstract Quick fixes

When a concrete base class implements an abstract super class with abstract methods, there are
two quick fixes available:

NEW AND NOTEWORTHY

www.springsource.com

1. Make class abstract, which adds the "abstract" modifier to the sub-class
2. Add unimplemented methods, which adds method stubs for all unimplemented methods,

as shown here:

Add groovy classpath container quick fix

When errors like these are seen on the first line of the editor, it means that the Groovy libraries
cannot be found:

There is now a quickfix that will automatically add the Groovy classpath container to the project:

Convert to closure and convert to method quick assists

This pair of quick assists can be invoked when inside of a method or closure declaration (the
closure declaration must be assigned to a field), and allows a quick conversion between the
two.

For example, this method declaration:

is converted into this closure:

And the closure can be converted back into the method declaration.

NEW AND NOTEWORTHY

www.springsource.com

Convert to single line/multi line string

This pair of quick assists converts between single and multi line strings. When converting
between string variants, newlines, tabs, etc are properly (un-)escaped.

Here, a single line string is converted into a multiline string:

And, it can be converted back:

Remove unnecessary semi-colons

This quick fix will remove all unnecessary semi-colons from a Groovy file. For example, this file:

Will have all unnecessary semi-colons removed, but required ones will remain:

Better Grab support
Groovy-Eclipse is careful to not allow AST transforms to run during reconciling. Reconciling is the
special compile done on the editor contents whilst they are actively being worked on, prior to a
save. AST transforms are prevented from running because they can damage source locations/etc
that in turn damage other editor features (breaking search/refactoring/etc). However, in 2.6.1
the Grab transformation is being allowed to run since it doesn't modify the code structure but
instead just pulls in jars to be on the compilation classpath. This should mean that when working
on scripts/etc that are Grab'ing dependencies, there should be no errors in the editor view.

More binary dependencies
The Groovy-Eclipse classpath container now includes the ivy, jline, and bsf jars by default. Even
thought these libraries are not typically used directly in user code, including them on the
classpath will help with searching for binary references. See GRECLIPSE-1211.

NEW AND NOTEWORTHY

www.springsource.com

Maven integration
There is now better ordering on the Java classpath of Groovy source folders when importing
maven projects that user Groovy into Eclipse and STS.

Gradle Tooling

Editing Support
We now provide some basic editing support for .gradle files. To benefit from this a recent
version of Greclipse must be installed (version 2.6.1.M1 is required).

Support consists of two separate pieces each of which can be enabled/disabled individually.

1) Groovy Eclipse DSL Descriptor support:

STS Gradle tool support now ships with a simple Groovy Eclipse DSL Descriptor.

Although the DSLD file is still limited and very much a work in progress it will already provide
some useful content-assist and JavaDoc hovers.

NEW AND NOTEWORTHY

www.springsource.com

Sample JavaDoc hover:

DSLD support is enabled automatically when importing a Gradle project with the import wizard.
It can also be disabled/enabled after the import with the Gradle > Enable/Disable DSL Support
menu on an already imported project.

Enabling DSLD support will convert the project into a ‘Groovy Project’ and add the required
classpath entries.

2) An option to suppress all underlining in .gradle files.

By default, the Groovy Eclipse editor underlines all identifiers for which it cannot infer a type. This
can be disturbing when editing a Gradle script file where many of the identifiers can’t be
inferred. STS now provides the option to disable this underlining in .gradle files:

NEW AND NOTEWORTHY

www.springsource.com

Gradle tasks view
Gradle tooling now provides a basic 'Tasks View' that can be opened via 'Windows > Show
View > Gradle > Gradle Tasks':

The tasks view shows a list of tasks associated with a particular Gradle project (see image
below). The project can be selected manually using the popup menu in the view itself.

Alternatively a 'link with selection' option ('double arrow' toggle button in the tool bar) will make
the view automatically track the 'current project' based on elements selected in other views (e.g.
project explorer or outline view).

Double clicking on any task in the view will launch the task. If a launch configuration for this task
does not exist a new launch configuration will be created, otherwise the existing configuration
will be reused.

NEW AND NOTEWORTHY

www.springsource.com

Currently the view is very basic and always shows an unfiltered list of all the tasks in the selected
project, sorted alphabetically. In the future we plan to provide ways to customize sorting and
filtering the list. We are still considering options on how to further develop this part of the UI and
welcome any feedback.

Working without the ‘Gradle Dependencies’ classpath container
STS 2.9.0 now supports importing and working with Gradle projects without adding the ‘Gradle
Dependencies’ classpath container. This option is provided for users who already have working
and carefully tuned build scripts based on the Gradle eclipse plugin.

It is also useful if a project depends on features that are currently supported by the Gradle
eclipse plugin, but not via the Gradle Tooling API (essentially, only “pure Java Nature” projects
are currently supported by the tooling API).

The import option to achieve this is shown here:

NEW AND NOTEWORTHY

www.springsource.com

When dependency management is disabled, it is no longer possible to refresh individual aspects
of a project’s configuration. Thus the Refresh Dependencies and Refresh Source Folders menus
are disabled. However it is still possible to refresh a project as a whole, using the Refresh All
menu command:

NEW AND NOTEWORTHY

www.springsource.com

Fixed Bugs and Enhancement Requests
Here is a full list of resolved bugs and enhancement requests for the 2.9.0 release:

https://issuetracker.springsource.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=project
+%3D+STS+AND+fixVersion+in+%2811804%2C+11803%2C+11802%2C+11800%2C+11
799%29+AND+status+in+%28Resolved%2C+Closed%29

New & Noteworthy of previous releases
STS 2.8.x:
http://download.springsource.com/release/STS/doc/STS-new_and_noteworthy-
2.8.1.RELEASE.pdf

STS 2.7.x:
http://download.springsource.com/release/STS/doc/STS-new_and_noteworthy-
2.7.2.RELEASE.pdf

STS 2.6.x:
http://download.springsource.com/release/STS/doc/STS-new_and_noteworthy-
2.6.1.SR1.pdf

STS 2.5.x and before:
http://download.springsource.com/release/STS/doc/STS-new_and_noteworthy-
2.5.2.SR1.pdf

