一、Prometheus特点
Prometheus 是一个开源的完整监控解决方案,其对传统监控系统的测试和告警模型进行了彻底的颠覆,形成了基于中央化的规则计算、统一分析和告警的新模型。 相比于传统监控系统,Prometheus 具有以下优点:
1.1、易于管理
- Prometheus 核心部分只有一个单独的二进制文件,不存在任何的第三方依赖(数据库,缓存等等)。唯一需要的就是本地磁盘,因此不会有潜在级联故障的风险
- Prometheus 基于 Pull 模型 的架构方式,可以在任何地方(本地电脑,开发环境,测试环境)搭建我们的监控系统
- 对于一些复杂的情况,还可以使用 Prometheus 服务发现的能力动态管理监控目标
1.2、监控服务的内部运行状态
Pometheus 鼓励用户监控服务的内部状态,基于Prometheus 丰富的 Client 库,用户可以轻松的在应用程序中添加对Prometheus 的支持,从而让用户可以获取服务和应用内部真正的运行状态
1.3、强大的数据模型
所有采集的监控数据均以指标(metric)的形式保存在内置的时间序列数据库当中(TSDB,Time Series DB)。所有的样本除了基本的指标名称以外,还包含一组用于描述该样本特征的标签。如下所示
http_request_status{
code='200',
content_path='/api/path',
environment='produment'
} =>
[value1@timestamp1,value2@timestamp2...]
http_request_status{ # 指标名称
code='200', # 维度的标签
content_path='/api/path2',
environment='produment'
} =>
[value1@timestamp1,value2@timestamp2...] # 存储的样本值
每一条时间序列由指标名称(Metrics Name)以及一组标签 Labels唯一标识。每条时间序列按照时间的先后顺序存储一系列的样本值
http_request_status
:指标名称(Metrics Name){code=‘200’,content_path=’/api/path’,environment=‘produment’}
:表示维度的标签,基于这些 Labels 我们可以方便地对监控数据进行聚合,过滤,裁剪[value1@timestamp1,value2@timestamp2…]
:按照时间的先后顺序存储的样本值
1.4、强大的查询语言PromQL
Prometheus 内置了一个强大的数据查询语言 PromQL。 通过 PromQL 可以实现对监控数据的查询、聚合。同时 PromQL 也被应用于数据可视化(如 Grafana)以及告警当中。
通过 PromQL 可以轻松回答类似于以下问题:
- 在过去一段时间中 95%应用延迟时间的分布范围?
- 预测在 4 小时后,磁盘空间占用大致会是什么情况?
- CPU 占用率前 5 位的服务有哪些?(过滤)
1.5、高效
对于监控系统而言,大量的监控任务必然导致有大量的数据产生。而 Prometheus 可以高效地处理这些数据,对于单一Prometheus Server 实例而言它可以处理:
- 数以百万的监控指标
- 每秒处理数十万的数据点
1.6、可扩展
可以在每个数据中心、每个团队运行独立的 Prometheus Sevrer。Prometheus 对于联邦集群的支持,可以让多个 Prometheus 实例产生一个逻辑集群,当单实例 Prometheus Server 处理的任务量过大时,通过使用功能分区(sharding)+联邦集群(federation)可以对其进行扩展
1.7、易于集成
使用 Prometheus 可以快速搭建监控服务,并且可以非常方便地在应用程序中进行集成。目前支持:Java,JMX,Python,Go,Ruby,.Net,Node.js 等等语言的客户端 SDK,基于这些 SDK 可以快速让应用程序纳入到 Prometheus 的监控当中,或者开发自己的监控数据收集程序
同时这些客户端收集的监控数据,不仅仅支持 Prometheus,还能支持 Graphite 这些其他的监控工具
同时 Prometheus 还支持与其他的监控系统进行集成:Graphite,Statsd,Collected, Scollector, muini, Nagios 等。 Prometheus 社区还提供了大量第三方实现的监控数据采集支持:JMX,CloudWatch,EC2,MySQL,PostgresSQL,Haskell,Bash,SNMP, Consul,Haproxy,Mesos,Bind,CouchDB,Django,Memcached,RabbitMQ,Redis,RethinkDB,Rsyslog 等等
1.8、可视化
- Prometheus Server 中自带的 Prometheus UI,可以方便地直接对数据进行查询,并且支持直接以图形化的形式展示数据。同时 Prometheus 还提供了一个独立的基于 Ruby On Rails 的 Dashboard 解决方案 Promdash
- 最新的 Grafana 可视化工具也已经提供了完整的Prometheus 支持,基于 Grafana 可以创建更加精美的监控图标
- 基于 Prometheus 提供的 API 还可以实现自己的监控可视化UI
1.9、开放性
通常来说当我们需要监控一个应用程序时,一般需要该应用程序提供对相应监控系统协议的支持,因此应用程序会与所选择的监控系统进行绑定。为了减少这种绑定所带来的限制,对于决策者而言要么你就直接在应用中集成该监控系统的支持,要么就在外部创建单独的服务来适配不同的监控系统
而对于 Prometheus 来说,使用 Prometheus 的 client library 的输出格式不止支持 Prometheus 的格式化数据,也可以输出支持其它监控系统的格式化数据,比如 Graphite。因此你甚至可以在不使用 Prometheus 的情况下,采用 Prometheus 的 client library 来让你的应用程序支持监控数据采集