【大模型】关于LLM大模型的10个问题——大型语言模型的本质是什么? 如果用数学公式来表达大模型,怎么表示?……

本文探讨了大型语言模型的本质,即对自然语言的概率分布建模,并通过数学公式进行表达。讨论了训练数据的重要性,举例说明了预处理的作用。还概述了大模型在文本生成、机器翻译、问答系统等领域的应用,以及未来的发展前景,包括效率提升、多语言处理和与现实世界的融合。此外,文章提到了低能耗计算的最新进展,如硬件加速器和模型压缩技术,并分析了不同模型压缩技术的适用场景。最后,文章探讨了大模型的智能涌现及其对人类工作和生活方式的影响,以及人工智能可能对金融、医疗、制造等行业产生的深远变革。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 大型语言模型的本质

大型语言模型的本质是对自然语言的概率分布进行建模。这样的模型可以用来生成自然语言文本或者对自然语言文本进行分类、翻译等任务。具体来说,给定一段自然语言文本,大型语言模型可以计算出这段文本在语言的概率分布中的概率,这个概率可以用来判断文本的流畅性、语法正确性等。

用数学公式来表达大型语言模型可以使用条件概率公式,如下所示:

P ( w 1 : T ) = ∏

评论 69
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值