Word Embeddings: 词嵌入的原理、概念和主要的应用场景,并介绍一些词嵌入方法的细节和使用词嵌入的方法的案例

本文深入探讨词嵌入的概念、模型结构及其在文本表示学习、相似性计算、聚类和分类等任务中的应用。介绍了分布式表示的CBOW和Skip-Gram模型,以及矩阵分解的词嵌入方法,如FastText。此外,还讨论了ELMo、BERT等更先进的上下文词嵌入模型,以及词嵌入在实际案例中的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

自然语言处理(NLP)任务中经常需要对文本进行特征提取、文本表示学习或文本相似性计算。在这些任务中,用到的文本数据通常是海量的文档,这些文档中往往会包含多种形式的噪声、歧义和不完整信息。例如,同一个词可能有不同的词形,或者短语的缩写等等。要有效地解决这一类问题,需要基于语料库中的大量文本数据训练预训练好的模型,然后将这些模型应用到特定任务中去。其中最典型的方法就是词嵌入(Word embeddings),它能够捕获上下文环境中的相似性,并把文本转化成向量的形式。本文将介绍词嵌入的原理、概念和主要的应用场景,并介绍一些词嵌入方法的细节,最后给出一些使用词嵌入的方法的案例。

2.词嵌入

2.1 概念及特点

词嵌入(word embedding)是一个将文本转换成固定长度的向量的过程,它通过上下文环境中的相似性捕获文本的语义,并且可以很好地表示离散且稀疏的原始文本。简单来说,词嵌入就是利用训练好的神经网络模型学习得到的语义相关的统计特性,将每个单词映射到低维度的空间中。通过这种方式,能够在高效计算下快速找到相似的文本、文本分类、聚类、情感分析等任务的输入输出关系,从而提升系统的性能。

目前,词嵌入方法主要包括两类:

1.基于分布式表示的词嵌入方法:利用神经网络模型学习词的向量表示,其中各个词向量之间具有相似的上下文关系;
2.基于矩阵分解的词嵌入方法:利用矩阵分解算法将语料库中的词汇表示为低秩矩阵,从而实现降维和相似性建模。

2.2 模型结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值