文章目录
WGAN:WassersteinGAN
作者:禅与计算机程序设计艺术
1. 背景介绍
生成对抗网络(Generative Adversarial Networks, GANs)是近年来机器学习领域最为热门和有影响力的创新之一。GANs通过训练两个互相对抗的神经网络模型 - 生成器(Generator)和判别器(Discriminator) - 来学习数据分布,从而生成与真实数据难以区分的合成数据。这种对抗训练的方式使得GANs能够生成出高质量的样本,在图像生成、语音合成、文本生成等诸多领域都有广泛应用。
然而,GANs的训练过程往往存在不稳定性和难以收敛的问题。Wasserstein GAN(WGAN)就是为了解决这些问题而提出的一种改进型GANs架构。WGAN利用了Wasserstein距离(也称为Earth Mover’s Distance)作为判别器的损失函数,从而使训练过程更加稳定,并能够提高生成样本的质量。
2. 核心概念与联系
WGAN的核心思想是利用Wasserstein距离作为判别器的损失函数,以取代原始GAN中基于JS散度的损失函数。Wasserstein距离是一种度量两个概率分布之间距离的方法,它能够提供比JS散度更平滑、更有意义的梯度信号,从而使训练过程更加稳定。
Wasserstein距离的数学定义如下: