1. 背景介绍
1.1 强化学习概述
强化学习(Reinforcement Learning, RL)是机器学习的一个重要分支,它关注的是智能体如何在与环境的交互中学习到最优策略,从而最大化累积奖励。不同于监督学习和非监督学习,强化学习没有明确的标签或数据样本,而是通过试错的方式,不断探索环境并根据反馈调整策略。
1.2 Q-learning 算法
Q-learning 是一种经典的强化学习算法,它基于值迭代的思想,通过学习一个状态-动作价值函数(Q 函数)来评估每个状态下执行某个动作的预期回报。Q-learning 算法简单易懂,应用广泛,在许多领域取得了成功。
1.3 增量学习
增量学习(Incremental Learning)是指能够不断地从新的数据中学习并更新模型的能力,而不需要重新训练整个模型。在现实世界中,环境往往是动态变化的,智能体需要不断适应新的情况。因此,增量学习对于强化学习算法至关重要。
2. 核心概念与联系
2.1 马尔可夫决策过程(MDP)
马尔可夫决策过程(Markov Decision Process, MDP)是强化学习问题的数学模型,它由以下几个要素组成:
- 状态集合(S):表示智能体所处的环境状态。
- 动作集合(A):表示智能体可以执行的动作。
- 状态转移概率(P):表示在当前状态下执行某个动作后转移到下一个状