HDFS原理与代码实例讲解
1.背景介绍
1.1 大数据时代的到来
随着互联网、物联网、云计算等技术的快速发展,海量的数据不断产生。传统的数据存储和处理系统已经无法满足当前大数据时代的需求。为了有效地存储和处理这些海量数据,分布式文件系统(Distributed File System)应运而生。
1.2 HDFS概述
Apache Hadoop分布式文件系统(HDFS)是Apache Hadoop项目的核心组件之一,是一种高可靠、高吞吐量的分布式文件系统。它旨在跨计算机集群存储大量数据,并为大型数据集提供高吞吐量的数据访问。HDFS采用主从架构,由一个NameNode(名称节点)和多个DataNode(数据节点)组成。
2.核心概念与联系
2.1 HDFS架构
HDFS采用主从架构,主要由以下几个组件组成:
- NameNode(名称节点): 管理文件系统的命名空间和客户端对文件的访问操作。它是HDFS的主节点,负责维护文件系统的元数据。
- DataNode(数据节点): 存储实际的文件数据块,并执行数据块的读写操作。
- SecondaryNameNode(辅助名称节点): 定期合并NameNode的编辑日志,减轻NameNode的内存压力。