文章标题
大模型应用开发 动手做AI Agent
AutoGPT
关键词:大模型、应用开发、AI Agent、深度学习、自然语言处理
摘要: 本文将深入探讨大模型在应用开发中的实践,特别是在创建AI Agent方面。我们将从大模型的基本概念和特点出发,逐步介绍主流大模型的概述及其在企业中的应用前景。随后,我们将深入讨论大模型的技术基础,包括深度学习与神经网络、自然语言处理技术以及大规模预训练模型原理。在应用开发部分,我们将搭建开发环境,介绍AI Agent的基本概念与开发流程,并通过实战案例展示如何动手实现AI Agent。最后,我们将探讨大模型应用的优化与调优策略,案例分析,以及应用安全与隐私保护,并展望大模型技术的未来趋势与发展方向。
《大模型应用开发 动手做AI Agent》目录大纲
第一部分:大模型基础
第1章:大模型概述
1.1 大模型的定义与特点
- 大模型定义: 模型大小达到G、T级别,参数量达到数十亿至数万亿级别。
- 大模型特点: 计算量巨大、训练成本高、泛化能力强、应用广泛。
1.2 主流大模型简介
GPT系列模型