LinkNet 笔记

LinkNet 笔记

一、背景

目标检测上中 Fast RCNN,YOLO,SSD 致力于实时的目标检测,但分割任务上实时性的相关工作仍未有所进展。

二、网络结构

创新点:每个编码器与解码器相连接,编码器的输入连接到对应解码器的输出上。

  • 恢复降采样操作中丢失的空间信息;
  • 可以减少解码器的参数,因为解码器是共享从编码器的每一层学习到的参数;
1.png

conv 代表卷积,full-conv 代表全卷积,/2代表下采样的步长是2,*2代表上采样的因子是2。 在卷积层之后添加 BN,后加 ReLU。左半部分表示编码,右半部份表示解码。编码块基于 ResNet18。

编码模块

2.png

解码模块

3.png

网络模块输入输出大小

4.png

三、训练策略

  • 优化器:RMSProp
  • 使用自定义类别权重(a custom class weighing scheme): $\omega_{class}= \frac{1}{\ln\left(c+p_{class}\right)}$
  • 学习率:5e-4
  • batch_size:10
博客
32132
07-14 488
07-12 392
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值