炒作已经结束:生成式 AI 正推动企业搜索的发展

作者:来自 Elastic Jessica Taylor

了解 Accenture 和 Elastic 如何帮助企业抓住生成式 AI 带来的机遇。

谈到生成式 AI,企业需要有远大的思维。缩短几秒钟撰写邮件的时间固然有用,但真正价值的旅程始于在企业层面应用 AI。Accenture 和 Elastic 的新合作结合了技术专长和战略卓越,帮助企业打造成功 AI 未来所需的数据基础。

搜索的演进

2025 年是生成式 AI 从概念验证走向企业生产应用的一年。有了合适的数据基础,企业能够从知识库中释放更大价值,为长期转型和竞争优势铺平道路。无论是销售、客户服务还是市场营销,实际可用的应用场景数量都在快速增长,先行者已经获得了效率提升。

那么面对众多机会,企业应从哪里开始?Accenture 搜索与内容分析组董事总经理 Derek Rodriguez 表示,答案在于搜索的演进。“多年来,我们一直依赖传统的基于关键词的检索,用户输入搜索词并通过判断筛选结果,”他说,“近来,实时索引、分布式架构和语义搜索通过理解用户意图和上下文提升了准确度。”

如今的 AI 驱动搜索平台更进一步,统一结构化和非结构化数据,总结内容并生成洞见。通过理解数据中的意图、上下文和关系,这些系统加快了准确决策,减少了人工调研需求。Rodriguez 说:“自动化搜索工作流程大幅降低知识管理成本,改变了价值计算方式,提高了企业数据的回报。”

这种创新方法需要同样坚实的数据基础——即经过向量化并通过先进的检索和排序优化的数据。有了这些基础,企业可以将自有数据与大型语言模型(large language models - LLMs)结合,获取可信且合规的洞见。

Elastic 搜索董事总经理 Steve Mayzak 表示:“一个良好向量化、可搜索的知识库,是与业务系统集成的灵活起点,能够在关键业务场景中持续创造价值。”

Elastic 和 Accenture 的合作伙伴关系

在这里,Accenture 与 Elastic 的合作发挥了关键作用,将 Elastic 可扩展的、由 AI 驱动的搜索能力与 Accenture 深厚的行业专业知识结合起来,帮助企业最大化数据价值,推动真正的业务影响。

Rodriguez 表示,Elastic 的吸引力不仅在于其 AI 搜索技术的准确性和相关性,还在于其先进的监控功能和与众多 AI 生态合作伙伴的集成。作为回报,Accenture 带来了无与伦比的行业知识、战略咨询专长以及全球范围内能够实施和集成复杂技术解决方案的专业人才网络。Accenture 持续招聘并培训员工掌握 Elastic 技术,凸显了双方联盟的重要性。

Accenture 和 Elastic 还能帮助企业回答最难的问题之一:从哪里开始。Mayzak 说,组织应寻找数据丰富且准确的内部使用案例。“选择最适合当前 LLM 能力且成功率高的项目。通过证明价值,你可以为更多项目解锁预算,积累真正的动力。”

数据基础的重要性

两家公司都拥有丰富的经验,管理分散环境中的非结构化数据。Rodriguez 说:“在现实世界中,组织数据高度复杂,涵盖层级结构、网络和多维关系。”

许多大型组织 —— 尤其是制药、零售、汽车和电商等行业——存储着数百 TB 甚至 PB 级的数据。但这大量数字财富中很大一部分未被利用。平均而言,企业只使用了约 32% 的数据,超过三分之二的数据未被开发利用。¹

Accenture 帮助企业弥合这一差距,建立嵌套记录、业务标识符和多样排序信号之间复杂的联系。这些指标包括相关度分数、流行度、销售量和分类法等。

在如此复杂的环境中,使用简单的向量数据库就像用一根火柴照亮整个体育场——技术上有光,但对于挑战的规模来说远远不够。

“上下文在生成式 AI 中至关重要。正因为如此,Elasticsearch 远远领先于普通的开源向量数据库。特别是其先进的过滤和提升功能,能够确保在严苛的业务环境中结果的相关性和准确性。”

—— Derek Rodriguez,Accenture 搜索与内容分析组董事总经理

优化搜索相关性:检索与重排序

Mayzak 补充道:“部署向量数据库并将企业数据转化为嵌入只是让 RAG 和 LLM 工作流高效运作的第一步。真正的挑战在于优化搜索相关性,确保 AI 能检索到最符合上下文且价值最高的信息。”

为了提升检索质量,Elastic 采用多阶段检索策略:首先通过向量搜索或结合关键词与向量的混合方法进行初步召回,随后由重排序模型对检索出的文档进行准确性、上下文匹配度和信息量的评估。

Mayzak 说:“Elastic 非常重视经过微调的 Transformer 模型来过滤噪声,确保 AI 系统优先处理最有用、最可信的回答。”

Learning to Rank 这样的工具也支持结果的准确性,无论是针对个人还是群体,都为组织在面对不同受众时提供灵活性。随着数据量增加,系统会学习哪些特征对相关性影响最大,从而在模型中优先考虑这些特征。

Accenture 对搜索相关性的关注同样细致。Rodriguez 表示:“我们花大量时间评估 RAG 和生成式 AI 应用。要达到 90%–95% 的准确率,需要一个全方位的流程,照亮每一个环节。”

一个典型例子是 Accenture 的 AI 驱动搜索“手术室”流程,汇聚了来自数据摄取、查询构建、提示设计和业务等多个领域的专家,利用自动化和数据洞察方法诊断并解决准确率问题。

Rodriguez 将此比作神经外科医生给患者做手术:“专家就像外科医生,仔细检查和调整应用程序,其他专家则观察和分析。”这种方法帮助团队精准定位并解决搜索准确率障碍,这些问题通常与数据质量、上下文或查询方式相关。随后,可以实施自动化手段,持续监控应用性能。

Elastic 的开发者体验也是合作的重要基础。Mayzak 表示:“Elastic 优先考虑开发者如何从初始设置快速过渡到生产部署。我们努力提供一切所需,帮助他们迅速取得成果。”这包括 Elasticsearch AI Playground 等工具,简化了构建原型和发布生产应用的流程。

代理工作负载

有了坚实的基础,组织可以为快速到来的 AI 未来设计业务架构,这比大多数高管意识到的要快得多。这包括能够实现自动化和自主决策,同时有人类监督的代理框架。

Rodriguez 将代理分为三类:

  1. 最基础的层面,组织可以创建自己的内部搜索和问答系统。这类代理能执行诸如对结构化和非结构化数据进行自然语言查询、安排会议室、查找联系人信息或提供指引等任务。
  2. 第二类代理行为涉及机器人流程自动化(robotic process automation - RPA)和业务自动化。以发票处理为例:收到发票后,会在财务系统中触发一系列检查和数据登记。生成式 AI 可以自动化这些人工步骤,提升准确性并降低成本。
  3. 更高级的代理则可以组成协作团队,共同解决问题。一个主管代理可能会定义任务,比如制作市场简报,然后将子任务分派给其他专门代理。这些子代理负责收集信息并整合成最终成果。

在所有这些情况下,向量化且可搜索的知识库是必不可少的。“这是组织应该投入的基础设施,才能…”

2025 及以后趋势

Rodriguez 也对那些不确定是否现在行动还是观望第一波生成式 AI 的企业传递了明确的信息:“你需要有远大的思维。不要只局限于节省撰写邮件几秒钟的聊天机器人,”他说,“好消息是,像 Elasticsearch 这样的平台为企业级挑战提供了复杂的数据建模和搜索能力。”

“在 AI 时代,能够成功的组织是那些将搜索和检索视为核心智能层,而非仅仅是后端功能的组织——这一层将数据转化为决策,将洞察转化为行动。”

—— Derek Rodriguez,Accenture 搜索与内容分析组董事总经理

许多组织已经开始收获成果。英国最大的招聘公司 Reed 使用 Elastic 向量搜索技术,为雇主节省了 20% 的招聘成本。韩国领先的 IT 服务公司 LG CNS 部署了 Elastic 生成式 AI,搜索相关性提升了 95%,检索速度加快了 50%。

“真正的行业重塑需要深厚的智力投入,这正是 Accenture-Elasticsearch 合作带来的价值,”Mayzak 说。“我们将数据驱动的技术与深厚的行业知识相结合,帮助生成式 AI 项目快速进入生产阶段。”

Rodriguez 也认同必须实现可衡量的商业价值。通过将 Elastic 的 AI 原生搜索能力与 Accenture 的行业专长结合,企业能够超越炒作,迈向既具变革性又盈利的 AI 未来。

了解更多关于 Elastic 搜索 AI 平台上的生成式 AI,或开始免费 14 天试用

来源

  1. Seagate,“Seagate ‘Rethink Data’ 报告显示 68% 的企业数据未被充分利用”,2020 年。

本文中提及的任何功能或特性发布及时间完全由 Elastic 自行决定。当前未提供的功能可能不会按时或根本不会发布。

本博客可能使用或提及了由第三方拥有和运营的生成式 AI 工具。Elastic 无权控制这些第三方工具,对其内容、运行或使用不承担任何责任或义务,也不对因使用这些工具可能产生的任何损失或损害负责。使用包含个人、敏感或机密信息的 AI 工具时请谨慎。你提交的任何数据可能被用于 AI 训练或其他用途,且无法保证你提供的信息的安全性或保密性。请在使用前熟悉任何生成式 AI 工具的隐私政策和使用条款。

Elastic、Elasticsearch 及相关标识是 Elasticsearch N.V. 在美国及其他国家的商标、标志或注册商标。所有其他公司和产品名称均为其各自所有者的商标、标志或注册商标。

原文:The hype is over: Generative AI is driving the evolution of search within enterprises | Elastic Blog

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值