- 博客(2376)
- 收藏
- 关注

原创 Elastic 线下 Meetup 将于 2025 年 6 月 28 号下午在南京举行
2025 Elastic Meetup 南京站活动,由 Elastic、TechTalk 社区、新智锦绣联合举办,现诚邀广大技术爱好者及开发者参加。2025年6月28日 13:30-18:00江苏省南京市秦淮区汉中路189号平安金融中心三楼2025 Elastic Meetup 南京站_发现精彩城市生活-活动发布及直播平台!!请报名成功后,扫码加入本次活动群,接收活动相关信息讲师:Elastic 社区首席布道师 —— 刘晓国现为 Elastic 社区首席布道师。新加坡国立大学硕士,西北工业大学本硕。曾就职
2025-05-19 10:41:52
1760

原创 Elastic:如何成为一名 Elastic 认证工程师,Elastic 认证分析师及 Elastic 认证可观测性工程师
Elasticsearch 无疑是是目前世界上最为流行的大数据搜索引擎。根据 DB - Engines 的统计,Elasticsearch 雄踞排行榜第一名,并且市场还在不断地扩大:能够成为一名 Elastic 认证工程师也是很多开发者的梦想。这个代表了 Elastic 的最高认证,在业界也得到了很高的认知度。得到认证的工程师,必须除了具有丰富的 Elastic Stack 知识,而且必须有丰富的操作及有效的解决问题的能力。拥有这个认证证书,也代表了个人及公司的荣誉。针对个人的好处是,你可以..
2020-10-28 11:54:13
25578
19

原创 Elastic:开发者上手指南
你们好,我是Elastic的刘晓国。如果大家想开始学习Elastic的话,那么这里将是你理想的学习园地。在我的博客几乎涵盖了你想学习的许多方面。在这里,我来讲述一下作为一个菜鸟该如何阅读我的这些博客文章。我们可以按照如下的步骤来学习:1)Elasticsearch简介:对Elasticsearch做了一个简单的介绍2)Elasticsearch中的一些重要概念:cluster,n..........................................................
2020-02-25 20:01:55
163402
98

原创 Elastic:培训视频 - 在生产环境中配置 Fleet Server 和 Elastic Agent 之间的安全
在这篇文章中,我将会把我写的有些内容录制成视频,供大家参考。希望对大家有所帮助。优酷的视频频道地址在这里。Elastic 简介及Elastic Stack 安装:优酷,腾讯 Elastic Stack docker 部署:优酷,腾讯 Elasticsearch中的一些重要概念(Cluster/Shards/Replica/Document/Type/Index):优酷,腾讯 开始使用El...............
2020-01-06 15:31:54
17544
12

原创 Elasticsearch 简介
Elasticsearch是一个非常强大的搜索引擎。它目前被广泛地使用于各个IT公司。Elasticsearch是由Elastic公司创建并开源维护的。它的开源代码位于https://github.com/elastic/elasticsearch。同时,Elastic公司也拥有Logstash及Kibana开源项目。这个三个开源项目组合在一起,就形成了 ELK软件栈。他们三个共同形成了一个强大的...
2019-08-08 16:04:31
174118
32
原创 你以为 Elastic 只做 SIEM?再好好想想!
Elastic重新定义XDR安全防护,通过收购Endgame技术深度整合EDR能力,打造原生统一的安全平台。该方案突破传统EDR的数据处理瓶颈,支持PB级端点、网络、云端数据的实时关联分析,提供跨厂商的无缝防护。平台包含获奖级恶意软件防护、勒索软件防御和行为检测能力,支持Windows/macOS/Linux全平台。创新采用"数据湖"付费模式,仅按实际使用数据计费,包含无限端点授权。通过开源检测规则、AI辅助分析和自动故障排查等功能,实现透明化安全运营。在AV-Comparatives测
2025-06-28 11:12:08
878
原创 使用 Elasticsearch 构建一个用于真实健康数据的 MCP 服务器
摘要:本文介绍了如何使用FastMCP框架和Elasticsearch构建一个MCP(Model Context Protocol)服务器来管理和分析Apple Health健康数据。文章详细讲解了MCP的三个核心组件(Resources、Tools和Prompts)的实现方法,展示了如何将Elasticsearch作为数据存储后端,并通过Claude Desktop实现自然语言交互查询。该解决方案支持动态数据查询、趋势分析和可视化展示,为LLM代理提供了实时健康数据访问能力。文中包含完整的代码实现、测试方
2025-06-27 10:03:13
871
原创 Elastic:AI,开箱即用!
Elastic宣布其AI功能现已在Elastic Cloud中默认启用,消除了传统AI部署的复杂流程。该解决方案提供了开箱即用的托管LLM,支持安全、可观测性和搜索领域的AI应用,包括威胁检测、根因分析和自然语言查询等功能。Elastic独特的优势在于将AI深度集成到现有工作流中,支持检索增强生成(RAG)技术,并能统一访问各类数据源。同时平台保持开放架构,允许用户连接第三方LLM。该方案显著降低了AI使用门槛,使企业能立即获得AI驱动的安全防护和运维洞察,无需额外配置或签署第三方合同。
2025-06-26 09:05:07
1096
原创 Elastic 被《Forrester Wave™:2025 年第二季度安全分析平台》评为领导者
Elastic入选Forrester 2025年Q2安全分析平台领导者象限。报告指出,Elastic以工程驱动方式解决安全问题,整合SIEM、XDR和云安全于统一平台,提供AI驱动的检测、开放架构和灵活部署。其优势包括:RAG技术加速警报处理、透明AI增强分析、MITRE ATT&CK规则库,以及混合部署支持。客户数据显示,该平台可缩短99%平均修复时间。Elastic Security将多种安全功能整合,支持SaaS/本地部署,所有检测规则开源。近期与AWS达成战略合作,持续强化安全创新。
2025-06-26 08:22:16
955
原创 在 Logstash 中使用 Ruby 脚本
摘要:本文介绍了Logstash中Ruby filter插件的使用方法,用于实现高级数据转换。Ruby filter允许在Logstash管道中执行自定义Ruby代码,适用于标准过滤器无法处理的复杂场景,如深度嵌套数据处理、高级字符串处理和复杂业务逻辑实现。文章通过基础示例展示了内联Ruby代码和外部脚本的使用方法,并通过高级示例演示了如何操作嵌套数据结构、拆分事件、执行外部命令解析输出以及使用Ruby内置库。Ruby filter为Logstash管道提供了强大的扩展能力,能够满足各种复杂数据处理需求。
2025-06-25 09:27:42
1311
原创 开始使用 Elastic AI Assistant for Observability 和阿里 Qwen3
本文演示了如何结合Qwen3大模型与Elastic AI Assistant进行日志分析。首先通过Elastic DevTools添加了一条代理服务错误日志记录,然后配置AI Assistant连接器。在Observability模块中安装知识库后,用户可通过自然语言查询(如询问代理服务的临时错误原因)与日志数据进行交互分析。文章还提到当前版本(9.0.01)存在特殊配置需求,并预告后续将介绍使用Kibana创建知识库的方法。整个过程展示了AI技术如何帮助开发者更直观地理解和排查系统问题。
2025-06-25 09:01:56
977
原创 了解公共部门中的数据网格:支柱、架构和示例
想想那些像公共健康记录、城市规划模型等项目背后的所有数据。政府机构一直在产生大量数据。当数据分散在云平台、本地系统或像卫星和应急响应中心这样的专业环境中时,情况变得更加复杂。找到信息变得困难,更不用说有效利用它了。不同团队使用许多不同的应用程序和数据格式,导致真正的互操作性缺失。尽管他们尽最大努力建设数据驱动的组织,但根据最近 Elastic 的一项研究,65% 的公共部门领导者仍然难以实现实时、规模化地持续使用数据。“一位公共部门领导告诉 Elastic,‘我们的工作时间变长了,这不好,因为我
2025-06-24 10:05:39
915
原创 打破网络安全孤岛:实现防御数据协作
摘要:现代网络战场面临数据孤岛挑战,65%的公共部门在实时数据应用上存在困难。Elastic提出数据网格解决方案,通过跨集群搜索技术实现分布式数据协作,无需集中存储敏感数据。该方法基于四大原则:领域所有权、数据产品化、自助平台和联合治理,可提升90%运维效率,将威胁响应从数天缩短至分钟。为国防部门提供安全、高效的互操作性平台,在尊重数据主权的同时增强决策优势。典型实施周期仅6个月即见效。
2025-06-24 08:43:29
909
1
原创 如何在 Python 中连接 Elasticsearch 并使用 Qwen3 来实现 RAG
本文介绍了如何在本地部署阿里Qwen3大模型并连接到Elasticsearch实现RAG应用。主要内容包括: 创建Elasticsearch API key获取访问凭证 编写Python代码实现RAG流程,包括Elasticsearch查询、上下文构建和Qwen3模型调用 配置环境变量和证书,确保代码正常运行 测试Qwen3模型接口工作正常 修改代码适配最新Elasticsearch版本的数据结构 最终成功运行示例查询"哪些人在茶会",Qwen3准确识别出故事中的角色并给出详细回答 文章
2025-06-23 22:01:21
1371
原创 Elasticsearch:什么是搜索相关性?
搜索相关性是衡量搜索结果与用户查询意图匹配程度的关键指标,其核心在于通过文本分析、个性化算法和内容质量评估实现精准匹配。影响相关性的主要因素包括:1. 关键词匹配技术(TF-IDF等);2. 内容权威性与时效性;3. 用户意图识别;4. 个性化设置(地理位置/搜索历史)。当前行业采用BEIR等基准进行评估,并通过点击率、停留时间等用户行为指标持续优化。随着AI技术发展,语义搜索、向量搜索等创新方法正在重塑相关性标准,Elasticsearch等平台已集成机器学习技术实现智能排序。未来趋势将侧重多模态搜索、生
2025-06-23 14:28:03
1181
原创 通过 AIOps 、生成式 AI 和机器学习实现更智能的可观测性
AIOps:智能运维的未来 摘要:AIOps通过AI和机器学习技术优化IT运维,帮助团队应对云原生时代的数据爆炸、系统复杂性和快速变化三大挑战。它能自动分析海量运维数据,减少告警噪音,加速根因分析,并降低MTTR。随着生成式AI的兴起,AIOps正从解释日志、代码转换等基础功能,向具备上下文感知的智能助理演进。Elastic等平台已整合AI助理和语义搜索能力,但完全自主的运维代理仍需突破推理规划等技术瓶颈。AIOps正从可选能力转变为现代IT运维的核心竞争力,通过渐进式部署可有效建立组织信任,最终实现业务价
2025-06-22 11:25:16
742
1
原创 节省分析师时间:用 AI 实现更智能的防御调查
摘要: 英国(MOD)面临安全分析师倦怠和运营效率低下的挑战,每天需处理大量警报,数据泄露事件激增400%。《国防人工智能战略(2022)》提出通过AI自动化提升效率,Elastic的AI工具(如AIAssistant和AttackDiscovery)可整合多源数据,快速识别威胁,将调查时间从数小时缩短至几分钟,减少74%的人力消耗。统一数据模型支持零信任架构,简化流程并降低成本25%。MOD计划2026年前实现零信任,需依赖数据整合而非增加工具。Elastic的解决方案助力国防安全实现实时协作与高效
2025-06-21 09:18:25
759
原创 从 Elasticsearch 集群中移除一个节点
摘要:本文介绍了从Elasticsearch集群安全移除节点的步骤:1)可选执行同步刷新;2)获取节点名称;3)通过更新集群设置将节点排除;4)等待分片迁移完成后停止节点进程;5)验证集群状态。整个过程确保无数据丢失和性能影响。对于不想管理节点的用户,推荐使用ElasticCloud Serverless托管服务。文章还提供了相关命令和操作指南。(150字)
2025-06-21 08:49:12
883
原创 ECK 简化:在 GCP GKE Autopilot 上部署 Elasticsearch
本文介绍了如何在Google Kubernetes Engine(GKE) Autopilot上部署Elasticsearch集群。主要内容包括:1) 使用GKE Autopilot全托管Kubernetes服务简化集群管理;2) 通过Elastic Cloud on Kubernetes(ECK)运维工具快速部署Elasticsearch和Kibana;3) 详细配置步骤,包括创建集群、安装ECK Operator、部署单节点实例及调整资源配置;4) 如何通过LoadBalancer公开访问Kibana;
2025-06-20 09:17:51
665
原创 使用 AI 加速你从当前 SIEM 迁移到 Elastic Security
摘要:Elastic Security 8.18/9.0推出Automatic Migration功能,利用生成式AI实现SIEM的无缝迁移。该功能通过ELSER NLP模型进行语义匹配,将Splunk规则自动映射到1300+预建检测规则,未匹配规则则通过RAG技术转换为ES|QL查询。系统提供三重验证机制确保翻译准确性,并支持可视化对比和AI辅助编辑。目前以技术预览形式开放给企业级客户,未来将扩展支持更多SIEM系统和仪表板迁移。该功能与AutomaticImport等AI工具协同,可大幅降低迁移复杂度
2025-06-19 11:11:50
859
原创 Elastic 在 Microsoft Build 2025 —— 开发者,开发者,开发者!
Elastic以顶级赞助商身份亮相Microsoft Build 2025开发者大会,重点展示其AI创新成果。大会期间,Elastic将通过技术会议、现场演示(5月20日Theater B)和展台交流(#200),向开发者介绍Azure LLM与Elasticsearch的智能搜索集成、LLM可观测性方案等新技术。同时宣布多项重要进展:Elasticsearch正式支持混合搜索和BBQ向量数据库优化技术;推出Security自动迁移功能;Elastic Cloud Serverless即将在Azure正式发
2025-06-19 10:22:27
945
原创 炒作已经结束:生成式 AI 正推动企业搜索的发展
Accenture与Elastic合作推动企业生成式AI应用转型。随着2025年生成式AI进入生产阶段,企业需要构建强大的数据基础。双方合作结合Elastic的AI搜索技术和Accenture的行业专长,帮助企业优化数据利用。Elastic的多阶段检索策略和Accenture的"手术室"流程显著提升搜索准确性。典型案例显示,采用该方案的企业已实现95%相关性提升和50%检索加速。文章强调,企业应着眼AI驱动的业务流程重塑,而非简单自动化,并建议从高成功率的内部场景切入。通过建立可搜索的知
2025-06-18 11:44:52
681
原创 使用 Elasticsearch 提升 Copilot 能力
了解如何将 Elasticsearch 与 Microsoft 365 Copilot Chat 和 Microsoft Teams 中的 Copilot 搭配使用。
2025-06-18 11:09:40
1334
原创 Elasticsearch Open Inference API 新增对 Cohere 的 Rerank 3 模型支持
Reranker 会对现有向量搜索或关键词搜索系统返回的 “前 n 个结果” 进行语义增强,不需要更换模型或更改数据索引,就能显著提升这些结果的相关性,使其更适合作为上下文传递给大语言模型(LLMs)。Elastic 最近与 Cohere 合作,使 Elasticsearch 开发者能轻松使用 Cohere 的。
2025-06-17 10:36:09
906
原创 IBM 与 Elasticsearch 合作,通过 watsonx Assistant 提供对话式搜索
IBM与Elasticsearch合作,为watsonx Assistant集成检索增强生成(RAG)能力,提供基于企业数据的对话式AI搜索功能。通过Elasticsearch向量数据库支持多模态数据检索和混合搜索,结合IBM Granite等大语言模型,实现业务上下文的智能对话体验。IBM watsonx Discovery平台与Elasticsearch深度整合,提供语义搜索、联合搜索和向量搜索能力,助力企业快速构建AI助手。该方案显著提升AI应用开发效率(8-32倍),支持开箱即用的ELSER语义搜索
2025-06-17 09:37:18
647
原创 Elasticsearch 开放推理 API 增加对 IBM watsonx.ai rerank 模型的支持
Elasticsearch开放推理API新增对IBM watsonx.ai rerank模型的支持,提升语义搜索体验。通过集成IBM watsonx reranker,用户无需重新索引即可实现高相关性搜索排序。文章详细介绍了在Elasticsearch Serverless项目中使用IBM watsonx API密钥创建推理端点、配置索引数据,以及通过text_similarity_reranker进行语义重排搜索的完整流程。测试结果显示,相比传统关键词匹配,语义重排能更准确地返回上下文相关结果。该集成增强
2025-06-17 09:18:25
1331
原创 Elastic:什么是 MLOps?
MLOps(机器学习运维)是一套流程,旨在简化机器学习模型的开发、部署及维护。它结合了机器学习、DevOps和数据工程,通过自动化、持续监控和治理确保模型可靠性。MLOps框架包括数据准备、模型训练、部署和监控等组件,面临成本、工具选择和技能要求等挑战,但能提升效率、网络安全和模型可观察性。Elastic等工具可帮助实现MLOps的可观察性和数据分析需求。
2025-06-16 15:51:54
598
原创 Elasticsearch:什么是搜索分析?
搜索分析很重要,因为它让企业和网站所有者能够深入了解用户的行为和偏好。它衡量网站搜索功能的整体有效性,提供优化网站和知识库所需的洞察。搜索分析在搜索引擎优化( search engine optimization - SEO )和搜索引擎营销( SEM )等领域,以及任何拥有搜索应用的组织中都很有用,因为它可以提升搜索相关性和搜索引擎排名,从而通过搜索带来更好的用户体验。
2025-06-16 15:18:20
625
原创 Elasticsearch:什么是异常检测?
异常检测摘要 异常检测是识别数据中偏离正常模式的技术,用于发现潜在问题或威胁。常见异常类型包括点异常(单个异常值)、上下文异常(环境相关异常)、集体异常(群体模式异常)、时间异常(时序偏差)及空间异常(地理分布异常)。其核心流程为建立基线模型、比对新数据、验证并处理异常。主要技术分为基于规则和机器学习(监督/无监督/半监督学习)两类,广泛应用于网络安全、系统监控、欺诈检测等领域。虽然能提前预警风险,但也面临数据标注不足、误报/漏报平衡等挑战。最佳实践强调数据理解、技术适配和持续优化。Elastic等工具提供
2025-06-16 11:30:57
856
原创 什么是商业中的人工智能 ?
什么是商业中的人工智能 ?商业中的 AI 有助于提升生产力并简化运营,从而提升商业价值。像 machine learning、 deep learning 和 natural language processing (NLP) 这样的人工智能技术利用数据的力量,在解决问题和做决策方面实现了超越人类能力的规模。诸如 predictive analysis 这样的能力 —— 可以使用数据预测未来结果并基于趋势建模可能性——以实际方式体现了 AI 的优势。从日常生产力到推动创新, AI 也彻底改变了商业。
2025-06-16 10:57:02
1117
原创 Elasticsearch:什么是混合搜索?
混合搜索(Hybridsearch)是一种融合关键词搜索和语义搜索的新型检索方式,通过结合传统精确匹配与语义理解的优势,显著提升搜索精准度。它将BM25排序算法与向量搜索技术相结合,既能处理精确关键词匹配(稀疏向量),又能理解查询意图和上下文(密集向量)。混合搜索特别适合处理模糊查询和复杂语义场景,在电商、企业文档等应用中展现优势。与检索增强生成(RAG)技术结合后,还能为生成式AI提供更准确的上下文信息。Elastic等平台已提供开箱即用的混合搜索解决方案,使开发者能轻松实现更智能的搜索体验。
2025-06-15 12:29:24
904
原创 什么是 traces?
分布式追踪是实现云原生应用可观测性的关键技术,它通过记录请求在微服务架构中的完整调用链(包含traceID、span层级和时间戳等元数据),帮助开发者快速定位性能瓶颈和错误根源。与传统追踪相比,分布式追踪能应对复杂的服务网络,提供端到端的代码级可视化。OpenTelemetry作为开源标准,统一了追踪数据采集方式。结合日志、指标和持续分析三大支柱,分布式追踪使运维团队能全面监控系统健康状态,通过AI增强的异常检测优化应用性能。实施时需完成工具选型、代码埋点、数据收集分析和可视化等步骤。
2025-06-14 18:47:18
1109
原创 使用 Azure LLM Functions 与 Elasticsearch 构建更智能的查询体验
摘要:本文介绍了一个结合Azure GenAI LLM与Elasticsearch的智能房地产搜索应用示例。通过GitHub Codespaces可快速配置运行该应用,实现精准灵活的混合搜索体验。文章详细说明了从创建Elasticsearch索引、配置搜索模板,到部署Azure OpenAI服务和Azure Maps的完整流程。该应用采用分层架构,利用LLM解析用户查询,并通过参数提取、地理编码和搜索工具生成结构化搜索请求,最终在Elasticsearch中执行混合搜索。读者可按照教程创建云资源,配置环境,
2025-06-14 18:13:00
1514
1
原创 什么是 OpenSearch?- 比较 OpenSearch 及 Elasticsearch
OpenSearch是Amazon基于旧版Elasticsearch(7.10.2之前版本)和Kibana创建的分支项目,主要用于支持其Amazon OpenSearch Service。性能测试显示,Elasticsearch在速度、可扩展性和资源效率方面全面优于OpenSearch。Elastic强调其开源承诺,虽然曾因Amazon的行为调整许可证,但现已回归AGPL许可证。对比显示,Elasticsearch在搜索、数据分析、云中立性和十年积累的技术经验方面具有明显优势,而OpenSearch缺乏El
2025-06-13 14:43:07
1197
原创 下一代观测技术的进化:通过 OpenTelemetry 和生成式 AI 实现数据统一
生成式AI与机器学习正在重塑观测技术,但数据孤岛阻碍了其潜力发挥。本文探讨如何通过OpenTelemetry统一日志、指标和追踪,打破数据壁垒,释放生成式AI在自然语言调查、根因分析和主动运维中的全部能力。传统观测工具将数据割裂存储,导致AI分析时面临信息不完整、关联困难等问题。而统一存储的丰富日志(包含完整上下文数据)与生成式AI结合,可实现跨维度智能分析、自然语言查询和预测性维护。文章展示了OpenTelemetry实现方案,并指出统一数据将推动观测从被动响应向主动运维进化,为企业带来更高效的问题诊断和
2025-06-13 11:04:10
1060
原创 MCP(Model Context Protocol,模型上下文协议)的当前状态
了解 MCP、项目更新、功能、安全挑战、新兴用例,以及如何动手操作 Elastic 的 Elasticsearch MCP 服务器。Model Context Protocol(MCP)正迅速成为 AI 智能体和上下文丰富型 AI 应用程序的基础构建模块。在这篇文章中,我将介绍会议上的关键更新、新兴用例、MCP 的发展前景,以及如何动手操作 Elastic 的 Elasticsearch MCP 服务器。
2025-06-13 10:21:51
1503
原创 日志文件是什么?
日志文件是由各类系统、应用和设备生成的数据记录文件,包含时间戳和上下文信息,用于记录运行状态、安全事件和用户活动。常见的日志类型包括系统日志、应用日志、安全日志等,存储位置因操作系统而异。有效的日志管理需要集中收集、标准化存储和智能分析,企业通常采用Elastic等专业工具处理PB级日志数据,实现故障排查、安全分析和性能优化。日志管理与指标、追踪共同构成现代可观测性的三大支柱。
2025-06-12 11:18:19
924
1
原创 网络威胁解析:如何保护你的企业
网络威胁解析:如何保护你的企业。网络威胁(Cyber threats - 网络安全威胁)是指那些可能通过利用安全漏洞,对个人或组织产生负面影响的事件、行为或情况。网络威胁可能影响数据、系统、运营或人们数字存在的机密性、完整性或可用性。Elastic Security 提供对威胁的无限可见性,缩短调查时间,保护你的企业免受不断演变的威胁。借助由 Search AI Platform 驱动的 Elastic Security,安全团队能够全面了解攻击面,发现隐藏威胁,并以前所未有的规模阻止攻击。
2025-06-12 10:42:35
876
原创 Elastic 依然是全观测性的领导者
摘要:文章针对某公众号对Elasticsearch的偏颇评价做出回应,系统阐述了Elastic作为全平台解决方案的技术优势。通过DB-Engines排名、Gartner等权威报告数据,证明Elastic在搜索、全观测和安全领域的领导者地位。重点介绍了LogsDB+ZSTD压缩、BBQ向量优化等六大技术创新,对比分析了性能、成本等核心指标。文章强调Elastic统一平台可覆盖日志、指标、APM、SIEM等全数据生命周期,提供开箱即用的全观测与安全解决方案,其开源生态包含823个GitHub仓库,展现出强大的技
2025-06-12 10:07:10
1793
1
原创 Elasticsearch:使用 ES|QL 进行地理空间距离搜索
ES|QL在Elasticsearch 8.15中引入了地理空间距离搜索功能(ST_DISTANCE),成为最受欢迎的地理搜索特性之一。该功能遵循OGC标准,与PostGIS等空间数据库兼容,支持以米为单位计算球面距离(基于Haversine公式),精度达1厘米。通过Lucene索引优化,查询性能从30秒提升至50毫秒。ES|QL提供五种核心空间函数(ST_INTERSECTS等),其语法比SQL更简洁,且无需CRS转换。典型应用包括查找指定半径内的兴趣点(如10公里范围内的咖啡馆),并支持排序和聚合分析。
2025-06-12 09:39:10
1095
02-GraphRAG 和 Elasticseach 8 的创新实践 - 徐胜 上海 20250222
2025-03-03
03-Elasticsearch 在 AI 检索与 Serverless 模式成本优化的新特性 王亚宁 北京 20241214
2024-12-17
01-AI 驱动 - 搜索的未来 刘晓国 北京 20241214
2024-12-16
04 - 降本增效的利器,认识一个不同的 Elastic 顾鹏飞 北京 20241214
2024-12-16
02-Kibana 构建高级可视化 包春喜 北京 20241214
2024-12-16
02-Elasticsearch 8.x 向量搜索使用详解 杭州 1.6 2024
2024-12-10
高管指南:如何将生成式AI融入运营
2024-12-05
Elastic帮助企业发挥数据的作用
2024-12-05
Elastic最新产品及解决方案
2024-12-05
02-ES-小工具撬动大杠杆- 日常高效运维 Elastic - 尚雷 线上 20241128
2024-11-29
01-Elastic 向量搜索及 构建 RAG 应用 - 刘晓国 线上 20241128
2024-11-29
05-Elastic Stack 在企业安全运营中的实践和探索- 余锡琨 成都 20240921
2024-09-29
04-腾讯云ES AI增强与向量检索特性介绍 - 陈月望 成都 20240921
2024-09-29
01-Elasticsearch 简单而高效的管道查询语言- ESQL刘晓国 成都 20240921
2024-09-29
02-kibana 创建高级可视化 - 包春喜 成都 20240921
2024-09-29
02- Elastic Meetup-如何系统化的备战 Elastic认证专家考试 - 铭毅天下 线上 20240918
2024-09-18
01 - 一次生产集群 ES Watcher 失效的深度排查与分析 全过程剖析与解决方案 - 尚雷 线上 20240918
2024-09-18
01- Elasticsearch 简单而高效的管道查询语言 - 刘晓国 南京 20240825
2024-08-25
【AIOps领域】基于M02-双 MCP 赋能ES Luke 南京 20250628CP框架的Elasticsearch与Kibana智能根因分析系统设计:提升企业数据洞察效率和自动化运维能力
2025-06-28
03-Elasticsearch 数据流转之道 - 从写入到查询的技术探秘 尚雷.南京 20250628
2025-06-28
04-ES日志集群大规模迁移实践-李猛-南京-20250618
2025-06-28
腾讯云 ES AI 搜索优化实践 刘忠奇 线上 20250605
2025-06-05
ES/Ksibana 双MCP框架下的新一代AiOps实践 Luke 线上 20250521
2025-05-22
03-Elasticsearch跨境电商搜索优化实践 欧阳楚才 杭州 20250419
2025-04-19
02-阿里云Elasticsearch向量引擎百亿级数据优化实践 魏子珺 杭州 20250419
2025-04-19
05-ES AI Assistant集成 DeepSeek QwQ,搭建智能运维助手 槐新 杭州 20250419与应用场景演示
2025-04-19
04-Higress x Elasticsearch构建更智能的AI网关 程治玮 20250419
2025-04-19
00-Elastic Pioneer-项目
2025-04-19
Elasticsearch 8.17 Logsdb:企业降本增效利器 程地华 线上 20250416
2025-04-17
04 - 腾讯云 ES AI 搜索优化实践 - 刘忠奇 武汉 20250329
2025-03-31
02 - ES 在绿盟企业安全平台的应用实践 - 陆攀 武汉 20250329
2025-03-31
01 - AI 驱动 - 搜索的未来 -刘晓国 武汉 20250329
2025-03-31
05 -Elasticsearch 存算分离架构在小米的应用实践 - 周明裕 郑钧元 武汉 20250329
2025-03-31
03 - Agentic RAG 构建之路 - 李捷 武汉 20250329
2025-03-31
01-AI 驱动 - 搜索的未来 - 刘晓国 上海 20250222
2025-03-03
04-Elasticsearch 在 AI 驱动下的检索新特性 - 槐新 上海 20250222
2025-03-03
03-基于 ES 与 LLM 技术构建 B站大数据运维智能体实践 - 张勋祥 上海 20250222
2025-03-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人