AI监督学习算法:线性回归(最小二乘法、正则化(Ridge/Lasso))深度解析

一、线性回归基础理论

1.1 线性回归模型定义

线性回归是统计学和机器学习中最基础且广泛应用的预测建模技术之一,它通过建立自变量(特征)与因变量(目标)之间的线性关系来进行预测。从形式化定义来看,给定一个包含n个样本的数据集,其中每个样本有d个特征,线性回归模型可以表示为:

y = w 0 + w 1 x 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clf丶忆笙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值