文章目录
一、线性回归基础理论
1.1 线性回归模型定义
线性回归是统计学和机器学习中最基础且广泛应用的预测建模技术之一,它通过建立自变量(特征)与因变量(目标)之间的线性关系来进行预测。从形式化定义来看,给定一个包含n个样本的数据集,其中每个样本有d个特征,线性回归模型可以表示为:
y = w 0 + w 1 x 1
线性回归是统计学和机器学习中最基础且广泛应用的预测建模技术之一,它通过建立自变量(特征)与因变量(目标)之间的线性关系来进行预测。从形式化定义来看,给定一个包含n个样本的数据集,其中每个样本有d个特征,线性回归模型可以表示为:
y = w 0 + w 1 x 1