文章目录
一、向量检索技术基础与OceanBase实现原理
1.1 向量检索的核心概念与技术演进
向量检索(Vector Search)是现代人工智能应用中至关重要的基础技术,它通过将复杂数据(如文本、图像、音频等)转换为高维向量表示,并在向量空间中计算相似度来实现高效检索。在AI时代,向量检索已成为连接非结构化数据与大语言模型的关键桥梁。
向量化表示原理:任何类型的数据(文本、图像、视频等)都可以通过特定的嵌入模型(Embedding Model)转换为固定长度的数值向量。例如,OpenAI的text-embedding-ada-002模型会将文本转换为1536维的向量,而图像可能通过CLIP模型转换为512维或更高维的向量。这些向量在高维空间中的相对位置反映了原始数据之间的语义相似性——语义相近的数据点在向量空间中距离更近。
相似度度量方法:OceanBase支持三种主流的向量距离计算方式:
- 欧式距离(L2距离):
<->
操作符,计算向量各维度差值的平方和开方,适合需要精确度量物理距离的场景 - 内积(Dot Product)