machine learning 概率统计实例分析与理论

这篇博客探讨了机器学习中的概率统计方法,重点介绍了算法框架,如LRU缓存淘汰策略,以及统计学习方法,包括最小二乘法、感知器、KNN、朴素贝叶斯等。同时,讲解了决策树、逻辑回归和提升方法,如Boost和Adaboost,还涉及了EM算法、HMM、条件随机场等模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法框架

  1. 数据结构的存储方式
    • 数组和链表
      • 数组由于是紧凑连续存储,可以随机访问,通过索引快速找到对应元素,而且相对节约存储空间。但正因为连续存储,内存空间必须一次性分配够,所以说数组如果要扩容,需要重新分配一块更大的空间,再把数据全部复制过去,时间复杂度 O(N);而且你如果想在数组中间进行插入和删除,每次必须搬移后面的所有数据以保持连续,时间复杂度 O(N)。
      • 链表因为元素不连续,而是靠指针指向下一个元素的位置,所以不存在数组的扩容问题;如果知道某一元素的前驱和后驱,操作指针即可删除该元素或者插入新元素,时间复杂度 O(1)。但是正因为存储空间不连续,你无法根据一个索引算出对应元素的地址,所以不能随机访问;而且由于每个元素必须存储指向前后元素位置的指针,会消耗相对更多的储存空间。
  2. 数据的基本操作:增删改查
    1. 查:线性和非线性
    2. 数组遍历
void traverse(int[] arr) {
    for (int i = 0; i < arr.length; i++) {
        // 迭代访问 arr[i]
    }
}

LRU

  1. LRU 缓存淘汰算法就是一种常用策略。LRU 的全称是 Lea
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI拉呱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值