SlideShare una empresa de Scribd logo
14
Lo más leído
24
Lo más leído
25
Lo más leído
1
EJERCICIOS DE SISTEMAS DE ECUACIONES
Ejercicio nº 1.-
a) Resuelve por sustitución:
b) Resuelve por reducción:
Ejercicio nº 2.-
a) Resuelve por igualación:
b) Resuelve por reducción:
Ejercicio nº 3.-
a Resuelve por sustitución:
b Resuelve por reducción:
Ejercicio nº 4.-
a) Resuelve por sustitución:
b) Resuelve por igualación:
Ejercicio nº 5.-
a Resuelve por igualación:
b Resuelve por reducción:



5 2 1
3 3 5
x y
x y
 
  



2 6
4 3 14
x y
x y
 
 



5 2 2
2 2
x y
x y
 
 



5 3
2 4 12
x y
x y
 
   



3 5 15
2 3 9
 
 
x y
x y



4 6 2
6 5 1
 
 
x y
x y



2 3 14
3 14
x y
x y
  
  



2 3 2
6 12 1
x y
x y
 
  



5 2 11
2 3 12
 
 
x y
x y



2 4 7
3 5 4
  
 
x y
x y
2
Ejercicio nº 6.-
Resuelve cada uno de los siguientes sistemas:
Ejercicio nº 7.-
Resuelve los siguientes sistemas:
Ejercicio nº 8.-
Resuelve los siguientes sistemas:
Ejercicio nº 9.-
Resuelve estos sistemas:
Ejercicio nº 10.-
Resuelve los siguientes sistemas:



a) 2 1
3 10
x y
x y
 
   



b) 2 4
2 4 3
x y
x y
  
 



a) 4 1
2 5
x y
x y
 
  



b) 3 4
6 2 1
x y
x y
 
  



a) 3 2 4
2 2
x y
x y
  
 



b) 4 5
3 12 15
x y
x y
 
 



a) 2 3 1
3 2 4
x y
x y
 
 



b) 4 3 5
8 6 10
x y
x y
 
  



a) 4 9
2 2 2
x y
x y
  
  
3
Ejercicio nº 11.-
Resuelve este sistema:
Ejercicio nº 12.-
Resuelve el siguiente sistema:
Ejercicio nº 13.-
Resuelve el siguiente sistema:
Ejercicio nº 14.-
Resuelve este sistema de ecuaciones:
Ejercicio nº 15.-
Resuelve el sistema:
Ejercicio nº 16.-
a Busca dos pares de valores que sean solución de la ecuación 5x  4y  1.
b Representa gráficamente la recta 5x  4y  1.



b) 5 4 3
10 8 6
x y
x y
 
   
 
 





2 4 9
3 2 2
1 4
2 3 2
3 3
x y
x y x

 
    





2 1 3 11
2 3 6
2 1 6
5 10 5
x y
x y
 
 

   
 





3 2 13
4
3 3
2 2 3 13
3 2 6
x y
y
y x x

 
 
  
 
 





2 1
3
3
3 5 3 12
x
y
x y x

  
   
 





7 9 2 4
15
2 2
5 1 25
x y x
x y
 
  
  
4
c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación?
Ejercicio nº 17.-
a Obtén dos puntos de la recta 3x  2y  1 y represéntala gráficamente.
b ¿Alguno de los dos puntos obtenidos en el apartado anterior es solución de la ecuación 3x  2y  1?
c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta?
Ejercicio nº 18.-
a Representa gráficamente la recta 5x  2y  3.
b ¿Cuántas soluciones tiene la ecuación 5x  2y  3? Obtén dos de sus soluciones.
c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta?
Ejercicio nº 19.-
A la vista de la siguiente gráfica:
a Obtén tres puntos de la recta ax  by  c.
b Halla tres soluciones de la ecuación ax  by  c.
c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación?
Ejercicio nº 20.-
a De los siguientes pares de valores:
c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación?
Ejercicio nº 21.-
Averigua cuántas soluciones tiene el siguiente sistema de ecuaciones, representando las dos rectas en los
mismos ejes:
        
     
     
3 2 1
0, 10 ; , 19 ; 1, 4 ; 0, ; , 7
2 5 2
  
1
¿cuáles son soluciones de la ecuación 3 5?
2
x y  
1
b) Representa gráficamente la recta 3 5.
2
x y  
5
Ejercicio nº 22.-
a Representa en los mismos ejes el siguiente par de rectas e indica el punto en el que se cortan:
b ¿Cuántas soluciones tiene el sistema anterior?
Ejercicio nº 23.-
a Representa en los mismos ejes las rectas:
b ¿Qué dirías acerca de la solución del sistema anterior?
Ejercicio nº 24.-
a Representa en los mismos ejes las rectas:
b ¿En qué punto o puntos se cortan? ¿Cuántas soluciones tendrá el sistema?
Ejercicio nº 25.-
a Representa en los mismos ejes las rectas:
b ¿Cuántas soluciones tiene el sistema anterior? ¿Cuáles son?



5
2 2 2
  
  
x y
x y



2 2
1
 
 
x y
x y



2 1
2 2
  
 
x y
x y



1
2 2 2
x y
x y
  
  



2 0
2 4
 
  
x y
x y
6
PROBLEMAS DE SISTEMAS DE ECUACIONES
Problema nº 1.-
Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas
cifras, el número obtenido es 36 unidades mayor que el inicial.
Problema nº 2.-
En un triángulo rectángulo, uno de sus ángulos agudos es 12 mayor que el otro. ¿Cuánto miden sus tres
ángulos?
Problema nº 3.-
La distancia entre dos ciudades, A y B, es de 255 km. Un coche sale de A hacia B a una velocidad de 90
km/h. Al mismo tiempo, sale otro coche de B hacia A a una velocidad de 80 km/h. Suponiendo su velocidad
constante, calcula el tiempo que tardan en encontrarse, y la distancia que ha recorrido cada uno hasta el
momento del encuentro.
Problema nº 4.-
Halla un número de dos cifras sabiendo que la primera cifra es igual a la tercera parte de la segunda; y que si
invertimos el orden de sus cifras, obtenemos otro número que excede en 54 unidades al inicial.
Problema nº 5.-
La base mayor de un trapecio mide el triple que su base menor. La altura del trapecio es de 4 cm y su área es
de 24 cm2
. Calcula la longitud de sus dos bases.
Problema nº 6.-
La razón entre las edades de dos personas es de 2/3. Sabiendo que se llevan 15 años, ¿cuál es la edad de cada
una de ellas?
Problema nº 7.-
Un número excede en 12 unidades a otro; y si restáramos 4 unidades a cada uno de ellos, entonces el primero
sería igual al doble del segundo. Plantea un sistema y resuélvelo para hallar los dos números.
Problema nº 8.-
El perímetro de un triángulo isósceles es de 19 cm. La longitud de cada uno de sus lados iguales excede en 2
cm al doble de la longitud del lado desigual. ¿Cuánto miden los lados del triángulo?
Problema nº 9.-
Pablo y Alicia llevan entre los dos 160 €. Si Alicia le da 10 € a Pablo, ambos tendrán la misma cantidad.
¿Cuánto dinero lleva cada uno?
Problema nº 10.-
La suma de las tres cifras de un número capicúa es igual a 12. La cifra de las decenas excede en 4 unidades al
doble de la cifra de las centenas. Halla dicho número.
7
Problema nº 11.-
El perímetro de un rectángulo es de 22 cm, y sabemos que su base es 5 cm más larga que su altura. Plantea un
sistema de ecuaciones y resuélvelo para hallar las dimensiones del rectángulo.
Problema nº 12.-
Hemos mezclado dos tipos de líquido; el primero de 0,94 €/litro, y el segundo, de
0,86 €/litro, obteniendo 40 litros de mezcla a 0,89 €/litro. ¿Cuántos litros hemos puesto de cada clase?
Problema nº 13.-
El doble de un número más la mitad de otro suman 7; y, si sumamos 7 al primero de ellos, obtenemos el
quíntuplo del otro. Plantea un sistema de ecuaciones y resuélvelo para hallar dichos números.
Problema nº 14.-
Dos de los ángulos de un triángulo suman 122. El tercero de sus ángulos excede en
4 grados al menor de los otros dos. ¿Cuánto miden los ángulos del triángulo?
Problema nº 15.-
Una persona invierte en un producto una cantidad de dinero, obteniendo un 5% de beneficio. Por otra inversión
en un segundo producto, obtiene un beneficio del 3,5%. Sabiendo que en total invirtió 10 000 €, y que los
beneficios de la primera inversión superan en 300 € a los de la segunda, ¿cuánto dinero invirtió en cada
producto?
8
SOLUCIONES A LOS EJERCICIOS DE SISTEMAS DE
ECUACIONES
Ejercicio nº 1.-
a) Resuelve por sustitución:
b) Resuelve por reducción:
Solución:
2x  y  6  y  6  2x  6  4  2
Solución: x  2 ; y  2
Ejercicio nº 2.-
a) Resuelve por igualación:
b) Resuelve por reducción:
Solución:



5 2 1
3 3 5
x y
x y
 
  



2 6
4 3 14
x y
x y
 
 
1 5
a) 5 2 1
2
1 5 3 15
3 3 5 3 5 6 3 15 103 3 5
2 2
x
x y y
x x
x x x xx y

   


                      
7 1
21 7
21 3
x x      

5
1
1 5 8 43
2 2 6 3
x
y


   
1 4
: ;
3 3
Solución x y  
b) 2 6
4 3 14
x y
x y
  

  
 3
6 3 18
4 3 14
x y
x y
 
    
  
Sumando: 2 4 2x x    



5 2 2
2 2
x y
x y
 
 



5 3
2 4 12
x y
x y
 
   
a) 5 2 2
2 2
x y
x y
  

  
9
Solución: x  0 ; y  3
Ejercicio nº 3.-
a Resuelve por sustitución:
b Resuelve por reducción:
Solución:
Solución: x  0 ; y  3
2 2
2 2 8 2
2 2 2 2 10 10 12 85
5 12 3
2 2
y
x y
y y y y y
x y
 
  
           
   
2 4 2
2 2 2
3 3 3
2 2
: ;
3 3
x
Solución x y
 
      
 
 
b) 5 3
2 4 12
x y
x y
  

    
4
20 4 12
2 4 12
x y
x y

  
    
Sumando: 18 0 0x x  
       5 3 5 3 3x y x y y



3 5 15
2 3 9
 
 
x y
x y



4 6 2
6 5 1
 
 
x y
x y
15 5
3 5 15a)
3
15 5 30 10
2 3 9 3 9 30 10 9 272 3 9
3 3
y
x y x
y y
y y y yx y

   


                      
57
19 57 3
19
y y

      

15 5 15 5 3 0
0
3 3 3
y
x
  
   
b) 4 6 2
6 5 1
x y
x y
  

    
5
6
20 30 10
36 30 6
x y
x y

 
  
   
4 1
Sumando: 16 4
16 4
x x      
1 3 1
4 6 2 4 6 2 1 6 2 6 3
4 6 2
x y y y y y
 
                
 
1 1
: ;
4 2
Solución x y  
10
Ejercicio nº 4.-
a) Resuelve por sustitución:
b) Resuelve por igualación:
Solución:
Solución: x  4 ; y  2
Ejercicio nº 5.-
a Resuelve por igualación:
b Resuelve por reducción:
Solución:
Solución: x  3 ; y  2



2 3 14
3 14
x y
x y
  
  



2 3 2
6 12 1
x y
x y
 
  
 a) 2 3 14 2 3 3 14 14 2 9 42 14
3 14 3 14
x y x x x x
x y y x
             

     
28
7 28 4
7
x x       
 3 4 14 12 14 2y        
2 2b) 2 3 2
2 2 1 63
8 8 1 6
3 121 6
6 12 1
12
xx y y
x x
x x
x
yx y
         
       
      
7 1
14 7
14 2
x x

      

 2 2 1 22 2 1
3 3 3
x
y
 
  
1 1
: ;
2 3
Solución x y 



5 2 11
2 3 12
 
 
x y
x y



2 4 7
3 5 4
  
 
x y
x y
11 25 2 11a)
11 2 12 35
5 212 3
2 3 12
2
yx y x
y y
y
xx y
        
   
    
38
22 4 60 15 38 19 2
19
y y y y           
 11 2 211 2 15
3
5 5 5
y
x
  
   
11
Ejercicio nº 6.-
Resuelve cada uno de los siguientes sistemas:
Solución:
Solución: x  3 ; y  1
Ejercicio nº 7.-
Resuelve los siguientes sistemas:
Solución:
Solución: x  3 ; y  1
b) 2 4 7
3 5 4
x y
x y
   

  
3
2
6 12 21
6 10 8
x y
x y


   
  
29
Sumando: 2 29
2
y y  
29 51
2 4 7 2 4 7 2 58 7 2 51
2 2
x y x x x x
 
                  
 
51 29
: ;
2 2
Solución x y 



a) 2 1
3 10
x y
x y
 
   



b) 2 4
2 4 3
x y
x y
  
 
a) 2 1
3 10
x y
x y
  

      
1 2
3 1 2 10 3 6 10 7 7 1
x y
y y y y y y
  
                 
 1 2 1 2 1 1 2 3x y        
b) 2 4
2 4 3
x y
x y
   

    
2 4
2 2 4 4 3 4 8 4 3 0 11 No tiene solución.
y x
y y y y
  
          



a) 4 1
2 5
x y
x y
 
  



b) 3 4
6 2 1
x y
x y
 
  
a) 4 1
2 5
x y
x y
  

     
1 4
2 1 4 5 2 8 5 7 7 1
x y
y y y y y y
  
               
1 4 1 4 1 3x y      
b) 3 4
6 2 1
x y
x y
  

     
4 3
6 2 4 3 1 6 8 6 1 0 9 No tiene solución.
y x
x x x x
  
            
12
Ejercicio nº 8.-
Resuelve los siguientes sistemas:
Solución:
Solución: x  0 ; y  2
El sistema tiene infinitas soluciones.
Ejercicio nº 9.-
Resuelve estos sistemas:
Solución:
Solución: x  2 ; y  1
No tiene solución.



a) 3 2 4
2 2
x y
x y
  
 



b) 4 5
3 12 15
x y
x y
 
 
a) 3 2 4
2 2
x y
x y
   

  
 3 2 2 2 4 3 4 4 4 7 0 0
2 2
x x x x x x
y x
             
  
2 2 2 2 0 2y x     
b) 4 5
3 12 15
x y
x y
  

    
5 4
3 5 4 12 15 15 12 12 15 0 0
x y
y y y y
  
         



a) 2 3 1
3 2 4
x y
x y
 
 



b) 4 3 5
8 6 10
x y
x y
 
  
a) 2 3 1
3 2 4
x y
x y
  

    
2
3
4 6 2
9 6 12
x y
x y

 
  
   
Sumando: 5 10 2x x    
          2 3 1 4 3 1 3 3 1x y y y y
b) 4 3 5
8 6 10
x y
x y
  

   
2
8 6 10
8 6 10
x y
x y

  
   
Sumando: 0 20
13
Ejercicio nº 10.-
Resuelve los siguientes sistemas:
Solución:
Solución: x  2 ; y  1
El sistema tiene infinitas soluciones.
Ejercicio nº 11.-
Resuelve este sistema:
Solución:
Solución: x  2 ; y  1
Ejercicio nº 12.-
Resuelve el siguiente sistema:



a) 4 9
2 2 2
x y
x y
  
  



b) 5 4 3
10 8 6
x y
x y
 
   
a) 4 9
2 2 2
x y
x y
   

   
4 9
1
x y
x y
  

    4 9 1 5 10 2x x x x          
 4 9 4 2 9 8 9 1y x         
b) 5 4 3
10 8 6
x y
x y
  

    
2
10 8 6
10 8 6
x y
x y

  
    
Sumando: 0 0
 
 





2 4 9
3 2 2
1 4
2 3 2
3 3
x y
x y x

 
    
 
 
2 4 2 8 99
4 16 3 273 2 23 2 2
3 2 4 3 6 3 2 41 4
22 3 2
3 33 3
x x yy
x y
x x y x
x yx y x
  
         
    
              
 
4 3 11 4 3 11 4 8 2
6 6 1
x y x x x
y y
        
 
    





2 1 3 11
2 3 6
2 1 6
5 10 5
x y
x y
 
 

   
14
Solución:
Solución: x  3 ; y  1
Ejercicio nº 13.-
Resuelve el siguiente sistema:
Solución:
Solución: x  1 ; y  1
Ejercicio nº 14.-
Resuelve este sistema de ecuaciones:
Solución:
2 1 3 11
6 3 2 6 11 6 2 20 3 102 3 6
2 1 6 4 1 12 4 11 4 11
5 10 5
x y
x y x y x y
x y x y x y x y
  
             
     
                   

10 3
10 3 4 11 21 7 3
4 11
y x
x x x x
y x
   
       
   
10 3 10 3 3 10 9 1y x       
 





3 2 13
4
3 3
2 2 3 13
3 2 6
x y
y
y x x

 
 
  
 
3 2 13
4
3 3
2 2 3 13
3 2 6
x y
y
y x x
 
  

    

3 2 12 13
3 10 13
4 2 3 13
8 4 9 13
3 2 6
x y y
x y
y x x
y x x
   
  
    
       
3 10 13
5 8 13
x y
x y
  
 
    
5
3
15 50 65
15 24 39
x y
x y


 
   
Sumando: 26 26 1y y  
3 10 13 3 10 13 3 3 1x y x x x        
 
 





2 1
3
3
3 5 3 12
x
y
x y x

  
   
 
 
2 1
3
3
3 5 3 12
x
y
x y x

   

    
2 2
3
3
3 15 3 3 12
x
y
x y x
 
   
 
    
2 2 3 9
6 3 3
x y
x y
    
 
   
2 3 11
2 1
x y
x y
   
 
   
 1
2 3 11
2 1
x y
x y
 
  
  
Sumando: 2 10 5y y  
2 1 2 5 1 2 4 2x y x x x          
15
Solución: x  2 ; y  5
Ejercicio nº 15.-
Resuelve el sistema:
Solución:
Solución: x  2 ; y  4
Ejercicio nº 16.-
a Busca dos pares de valores que sean solución de la ecuación 5x  4y  1.
b Representa gráficamente la recta 5x  4y  1.
c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación?
Solución:
Le damos valores a x y obtenemos, por ejemplo, los puntos:
x  1  y  1  Punto 1, 1
x  3  y  4  Punto 3, 4
b Utilizamos los dos puntos obtenidos en el apartado anterior:
c Los puntos de la recta son las soluciones de la ecuación.
 





7 9 2 4
15
2 2
5 1 25
x y x
x y
 
  
  
 
7 9 2 4
15
2 2
5 1 25
x y x
x y
  
   

   
7 9 2 4 30
5 5 5 25
x y x
x y
     
 
   
5 9 26
5 5 30
x y
x y
   
 
  
( 1)
5 9 26
5 5 30
x y
x y 
  
   
56
Sumando: 14 56 4
14
y y

     

5 5 30 6 4 6 2x y x y x x         
5 1
a) 5 4 1 5 1 4
4
x
x y x y y

      
16
Ejercicio nº 17.-
a Obtén dos puntos de la recta 3x  2y  1 y represéntala gráficamente.
b ¿Alguno de los dos puntos obtenidos en el apartado anterior es solución de la ecuación 3x  2y  1?
c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta?
Solución:
Damos valores a x y obtenemos los puntos:
x  1  y  1  Punto 1, 1
x  1  y  2  Punto 1, 2
b Los dos puntos obtenidos son solución de la ecuación.
c Los puntos de la recta son las soluciones de la ecuación.
Ejercicio nº 18.-
a Representa gráficamente la recta 5x  2y  3.
b ¿Cuántas soluciones tiene la ecuación 5x  2y  3? Obtén dos de sus soluciones.
c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta?
Solución:
Le damos valores a x y obtenemos, por ejemplo, los puntos:
x  1  y  1  Punto 1, 1
x  1  y  4  Punto 1, 4
b Tiene infinitas soluciones. Dos de ellas son, por ejemplo, 1, 1 y 1, 4.
3 1
a) 3 2 1 3 1 2
2
x
x y x y y

      

   
3 5
a) 5 2 3
2
x
x y y
17
c Los puntos de la recta son las soluciones de la ecuación.
Ejercicio nº 19.-
A la vista de la siguiente gráfica:
a Obtén tres puntos de la recta ax  by  c.
b Halla tres soluciones de la ecuación ax  by  c.
c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación?
Solución:
a Por ejemplo: 0, 0; 2, 1; 4, 2.
b Por ejemplo: 0, 0; 2, 1; 4, 2.
c Los puntos de la recta son las soluciones de la ecuación.
Ejercicio nº 20.-
a De los siguientes pares de valores:
c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación?
Solución:
a Sustituimos cada uno de ellos en la ecuación:
        
     
     
3 2 1
0, 10 ; , 19 ; 1, 4 ; 0, ; , 7
2 5 2
  
1
¿cuáles son soluciones de la ecuación 3 5?
2
x y  
1
b) Representa gráficamente la recta 3 5.
2
x y  
   
       
1
0,10 3 0 10 5 0,10 es solución.
2
3 3 1 3
,19 3 19 5 ,19 es solución.
2 2 2 2
1
1, 4 3 1 4 1 1, 4 no es solución.
2
2 1 2 1 2
0, 3 0 0, no es solución.
5 2 5 5 5
1 1 1
, 7 3
2 2 2
      
   
         
   
            
   
         
   
   
        
   
1
7 5 , 7 es solución.
2
 
    
 
18
c Los puntos de la recta son las soluciones de la ecuación.
Ejercicio nº 21.-
Averigua cuántas soluciones tiene el siguiente sistema de ecuaciones, representando las dos rectas en los
mismos ejes:
Solución:
Representamos las dos rectas obteniendo dos puntos de cada una de ellas:
x  y  5  y  x  5 2x  2y  2  x  y  1  y  x  1
Son paralelas. El sistema no tiene solución.
   
 
 
1
b) Tomamos dos puntos de la recta, por ejemplo 0,10 y , 7 , y la representamos:
2



5
2 2 2
  
  
x y
x y
0 5 0 1
1 4 1 2
x y x y

19
Ejercicio nº 22.-
a Representa en los mismos ejes el siguiente par de rectas e indica el punto en el que se cortan:
b ¿Cuántas soluciones tiene el sistema anterior?
Solución:
a Representamos las dos rectas obteniendo dos puntos de cada una de ellas:
b Hay una solución: 1, 0 es decir, x  1 , y  0.
Ejercicio nº 23.-
a Representa en los mismos ejes las rectas:
b ¿Qué dirías acerca de la solución del sistema anterior?
Solución:
a Obtenemos dos puntos de cada una de las rectas para representarlas:



2 2
1
 
 
x y
x y
         

2 2 2 2 1 1
0 2 0 1
1 0 1 0
x y y x x y y x
x y x y



2 1
2 2
  
 
x y
x y
2 1 2 1 2 2 2 2
0 1 0 2
1 3 1 0
x y y x x y x y
x y x y
          

20
Son paralelas.
b El sistema no tiene solución, es incompatible, ya que las rectas no se cortan.
Ejercicio nº 24.-
a Representa en los mismos ejes las rectas:
b ¿En qué punto o puntos se cortan? ¿Cuántas soluciones tendrá el sistema?
Solución:
a Representamos las rectas obteniendo dos puntos de cada una de ellas:
x  y  1  y  x  1 2x  2y  2  x  y  1  y  x  1
b Se cortan en todos sus puntos, puesto que se trata de la misma recta. El sistema tendrá infinitas soluciones: todos
los puntos de la recta.



1
2 2 2
x y
x y
  
  
0 1 Es la misma recta.
1 2
x y
21
Ejercicio nº 25.-
a Representa en los mismos ejes las rectas:
b ¿Cuántas soluciones tiene el sistema anterior? ¿Cuáles son?
Solución:
a Representamos las rectas obteniendo dos puntos de cada una de ellas:
b Tiene una solución: 2, 1 es decir, x  2, y  1.



2 0
2 4
 
  
x y
x y

               

4
2 0 2 2 4 2 4
2 2
0 0 0 2
2 1 2 3
x x
x y y x y x y y x y
x y x y
22
SOLUCIONES A LOS PROBLEMAS DE SISTEMAS
DE ECUACIONES
Problema nº 1.-
Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas
cifras, el número obtenido es 36 unidades mayor que el inicial.
Solución:
Llamamos x a la primera cifra del número la de las decenas e y a la segunda la de las unidades). Así, el número
será 10x  y. Tenemos que:
y  10  x  10  3  7
El número buscado es el 37.
Problema nº 2.-
En un triángulo rectángulo, uno de sus ángulos agudos es 12 mayor que el otro. ¿Cuánto miden sus tres
ángulos?
Solución:
Llamamos x e y a los ángulos agudos del triángulo:
Tenemos que:
x  y  12  39  12  51
Los ángulos miden 39, 51 y 90.
Problema nº 3.-
La distancia entre dos ciudades, A y B, es de 255 km. Un coche sale de A hacia B a una velocidad de 90
km/h. Al mismo tiempo, sale otro coche de B hacia A a una velocidad de 80 km/h. Suponiendo su velocidad
constante, calcula el tiempo que tardan en encontrarse, y la distancia que ha recorrido cada uno hasta el
momento del encuentro.
10 10 10
10 10 36 9 9 36 4
x y x y x y
y x x y x y x y
        
   
            
10
10 4 6 2 3
4
y x
x x x x
y x
   
       
   
12 12 78
12 90 2 78 39
90 90 2
x y x y
y y y y
x y x y
    
          
    
23
Solución:
Llamamos x a la distancia que recorre el coche que sale de A hasta encontrarse.
Sabemos que e  v · t, donde e representa el espacio recorrido, v la velocidad y t el tiempo. Por tanto:
x  90t  90 · 1,5  135 km  255  x  255  135  120 km
Tardan 1,5 horas una hora y media en encontrarse. El coche que salió de A llevaba recorridos 135 km; y el que salió
de B, llevaba 120 km.
Problema nº 4.-
Halla un número de dos cifras sabiendo que la primera cifra es igual a la tercera parte de la segunda; y que si
invertimos el orden de sus cifras, obtenemos otro número que excede en 54 unidades al inicial.
Solución:
Llamamos x a la primera cifra del número la de las decenas e y a la segunda cifra la de las unidades. Así, el
número será 10x  y. Tenemos que:
y  3x  3 ·3  9
El número buscado es el 39.
Problema nº 5.-
La base mayor de un trapecio mide el triple que su base menor. La altura del trapecio es de 4 cm y su área es
de 24 cm2
. Calcula la longitud de sus dos bases.
Solución:
Llamamos x a la base menor e y a la base mayor.
Tenemos que:
90
255
255 80 255 90 80 255 170 1,5 horas
170
x t
x t t t t t
 

         
3
3
54
10 10 54 30 10 3 54 18 54 3
18
y
x x y
y x x y x x x x x x

  

             

24
y  3x  3 · 3  9
La base menor mide 3 cm y la base mayor, 9 cm.
Problema nº 6.-
La razón entre las edades de dos personas es de 2/3. Sabiendo que se llevan 15 años, ¿cuál es la edad de cada
una de ellas?
Solución:
Llamamos x e y a las edades de cada uno. Tenemos que:
Tienen 30 y 45 años.
Problema nº 7.-
Un número excede en 12 unidades a otro; y si restáramos 4 unidades a cada uno de ellos, entonces el primero
sería igual al doble del segundo. Plantea un sistema y resuélvelo para hallar los dos números.
Solución:
Hagamos una tabla para entender mejor la situación:
Tenemos que:
x  y  12  16  12  28
Los números son el 28 y el 16.
Problema nº 8.-
El perímetro de un triángulo isósceles es de 19 cm. La longitud de cada uno de sus lados iguales excede en 2
cm al doble de la longitud del lado desigual. ¿Cuánto miden los lados del triángulo?
Solución:
Llamamos x a la longitud de cada uno de los dos lados iguales e y a la del lado desigual.
 
3
3 3
4
2 2 24 12 3 12 4 12 324
2
y x
y x y x
x y
x y x y x x x x
 
  
     
            

 
2
3 2 3 2 15 3 2 30 30
3
15
x
x y x x x x x
y
y x

          

  
15 30 15 45y x    
SI RESTAMOS 4
PRIMER NÚMERO x x  4
SEGUNDO NÚMERO y y  4
 
12 12
4 2 4 12 4 2 8 16
x y x y
x y y y y
     

         
25
Tenemos que:
x  2y  2  2 · 3  2  6  2  8
Los lados iguales miden 8 cm cada uno; y el lado desigual mide 3 cm.
Problema nº 9.-
Pablo y Alicia llevan entre los dos 160 €. Si Alicia le da 10 € a Pablo, ambos tendrán la misma cantidad.
¿Cuánto dinero lleva cada uno?
Solución:
Llamamos x a la cantidad de dinero que lleva Pablo e y a la que lleva Alicia. Tenemos que:
x  y  20  90  20  70
Pablo lleva 70 € y Alicia, 90 €.
Problema nº 10.-
La suma de las tres cifras de un número capicúa es igual a 12. La cifra de las decenas excede en 4 unidades al
doble de la cifra de las centenas. Halla dicho número.
Solución:
Llamamos x a la cifra de las centenas que coincide con la de las unidades, por ser el número capicúa e y a la de
las decenas. Así, tenemos que:
El número que buscamos es el 282.
Problema nº 11.-
El perímetro de un rectángulo es de 22 cm, y sabemos que su base es 5 cm más larga que su altura. Plantea un
sistema de ecuaciones y resuélvelo para hallar las dimensiones del rectángulo.
Solución:
Llamamos x a la base e y a la altura.
 
2 19
2 2 2 19 4 4 19 5 15 3
2 2
x y
y y y y y y
x y
  
           
  
160 20 160 2 180 90
10 10 20
x y y y y y
x y x y
         

     
2 12 12 2
2 4 2 4 12 2 2 4 8 4 2 8
x y y x
y x y x x x x x y
     
 
               
26
Tenemos que:
x  y  5  3  5  8
La base mide 8 cm y la altura, 3 cm.
Problema nº 12.-
Hemos mezclado dos tipos de líquido; el primero de 0,94 €/litro, y el segundo, de
0,86 €/litro, obteniendo 40 litros de mezcla a 0,89 €/litro. ¿Cuántos litros hemos puesto de cada clase?
Solución:
Hacemos una tabla para organizar la información:
Tenemos que:
y  40  x  40  15  25
Hemos puesto 15 litros del primer tipo y 25 litros del segundo.
Problema nº 13.-
El doble de un número más la mitad de otro suman 7; y, si sumamos 7 al primero de ellos, obtenemos el
quíntuplo del otro. Plantea un sistema de ecuaciones y resuélvelo para hallar dichos números.
Solución:
Llamamos x al primer número e y al segundo. Así, tenemos que:
y  14  4x  14  4 · 3  14  12  2
2 2 22 11 5 11 2 6 3
5 5
x y x y y y y y
x y x y
            
 
    
1er
TIPO 2º TIPO MEZCLA
N. LITROS x y 40
PRECIO/LITRO
(euros) 0,94 0,86 0,89
PRECIO TOTAL
(euros) 0,94x 0,86y 35,6
 
4040
0,94 0,86 40 35,60,94 0,86 35,6
y xx y
x xx y
    

      
1,2
0,94 34,4 0,86 35,6 0,08 1,2 15
0,08
x x x x        
 
14 44 142 7
2
7 5 14 47 5
7 5
y
y xx yx
x xx y
x y
      
 
        
63
7 70 20 21 63 3
21
x x x x        
27
Los números son el 3 y el 2.
Problema nº 14.-
Dos de los ángulos de un triángulo suman 122. El tercero de sus ángulos excede en
4 grados al menor de los otros dos. ¿Cuánto miden los ángulos del triángulo?
Solución:
Uno de los ángulos mide x; el otro, 122  x, y el tercero, y.
Tenemos que:
Los ángulos miden 54, 58 y 122°  54°  68.
Problema nº 15.-
Una persona invierte en un producto una cantidad de dinero, obteniendo un 5% de beneficio. Por otra inversión
en un segundo producto, obtiene un beneficio del 3,5%. Sabiendo que en total invirtió 10 000 €, y que los
beneficios de la primera inversión superan en 300 € a los de la segunda, ¿cuánto dinero invirtió en cada
producto?
Solución:
Hacemos una tabla:
Tenemos que:
y  10000  x  10000  8000  2000
Invirtió 8000 € en el primer producto y 2000 € en el segundo.
4 4
4 58 54
122 180 58
y x y x
x x
x y x y
    
      
     
4 54 4 58y x     
INVERSIÓN BENEFICIO
PRIMER
PRODUCTO x 0,05x
SEGUNDO
PRODUCTO y 0,035y
 
1000010000
0,05 0,035 10000 3300,05 0,035 330
y xx y
x xx y
    

      
680
0,05 350 0,035 330 0,085 680 8000
0,085
x x x x        

Más contenido relacionado

DOCX
Ecuacion de la circunferencia
DOCX
Modelo de Examen de Reparación de matemática Noveno Grado
ODP
Dominio y rango de funciones reales
PDF
Ejercicios de sucesiones aritmeticas y geometricas
ODP
Presentacion sistemas de ecuaciones
PPTX
Inecuaciones lineales sistema de inecuaciones
PPSX
Objetivos y competencias Asignatura Álgebra
PDF
Taller teorema de pitagoras problemas
Ecuacion de la circunferencia
Modelo de Examen de Reparación de matemática Noveno Grado
Dominio y rango de funciones reales
Ejercicios de sucesiones aritmeticas y geometricas
Presentacion sistemas de ecuaciones
Inecuaciones lineales sistema de inecuaciones
Objetivos y competencias Asignatura Álgebra
Taller teorema de pitagoras problemas

La actualidad más candente (20)

PDF
FUNCIONES RACIONALES
PPTX
Gráficas senoidales
PPTX
Ecuaciones en números complejos
DOCX
Ejercicios de paralelas y perpendiculares
PDF
Guía 01 Trigonometría del triángulo rectángulo
PDF
Guia de ejercicios inecuaciones
PPTX
Sistema de ecuaciones lineales 2x2
PDF
Pitagoras resueltos
PPTX
Ecuaciones de 1er grado. Solución de problemas.
PPTX
Sistema de ecuaciones lineales
PPTX
Solucion sistema de_ecuaciones_lineales[1]
PPT
Transformaciones lineales y espacios vectoriales
PDF
Ejercicios sobre el teorema de pitágoras 218
PDF
Circunferencia que pasa por tres puntos
DOCX
PDF
Taller de progresiones geometricas
PPTX
Teorema de Thales
DOCX
Limites teoria y trabajo de grado 11
PDF
Semana 02 analisis vectorial unac 2010 a plus
DOCX
Prueba inecuaciones hoja 1 (autoguardado)
FUNCIONES RACIONALES
Gráficas senoidales
Ecuaciones en números complejos
Ejercicios de paralelas y perpendiculares
Guía 01 Trigonometría del triángulo rectángulo
Guia de ejercicios inecuaciones
Sistema de ecuaciones lineales 2x2
Pitagoras resueltos
Ecuaciones de 1er grado. Solución de problemas.
Sistema de ecuaciones lineales
Solucion sistema de_ecuaciones_lineales[1]
Transformaciones lineales y espacios vectoriales
Ejercicios sobre el teorema de pitágoras 218
Circunferencia que pasa por tres puntos
Taller de progresiones geometricas
Teorema de Thales
Limites teoria y trabajo de grado 11
Semana 02 analisis vectorial unac 2010 a plus
Prueba inecuaciones hoja 1 (autoguardado)
Publicidad

Similar a Ejercicios de sistemas de ecuaciones (20)

PDF
Ejercicios de sistemas de ecuaciones
PDF
Ejercicios de sistemas de ecuaciones.pdf
PDF
Ejercicios de sistemas de ecuaciones
PDF
Ejercicios de Funcion Lineal.pdf
PDF
Ejercicios de Funcion Lineal en matematicas
PDF
Funcion lineal
DOCX
Ejercicios de funcion lineal
PDF
19 igualdades-notables-ecuaciones-sistemas
DOCX
Ejercicios de funcion lineal 2
PDF
Ud4 ecuaciones y sistemas
PDF
Ejercicios de expresiones algebraicas.pdf
PDF
3 ejercicios de expresiones algebraicas
PDF
Ejercicios de expresiones algebraicas
PDF
Semana 2 -_ecuaciones_lineales
PDF
Ecuaciones de primer grado
PDF
Semana 330abril4mayo
PDF
Ecuaciones1grado
PDF
Ecuaciones de primer grado
PDF
Examen bimestral 4 segundo solucion
PDF
Practica 19 ecuaciones y sistemas de ecuaciones de 1er grado y problemas solu...
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuaciones.pdf
Ejercicios de sistemas de ecuaciones
Ejercicios de Funcion Lineal.pdf
Ejercicios de Funcion Lineal en matematicas
Funcion lineal
Ejercicios de funcion lineal
19 igualdades-notables-ecuaciones-sistemas
Ejercicios de funcion lineal 2
Ud4 ecuaciones y sistemas
Ejercicios de expresiones algebraicas.pdf
3 ejercicios de expresiones algebraicas
Ejercicios de expresiones algebraicas
Semana 2 -_ecuaciones_lineales
Ecuaciones de primer grado
Semana 330abril4mayo
Ecuaciones1grado
Ecuaciones de primer grado
Examen bimestral 4 segundo solucion
Practica 19 ecuaciones y sistemas de ecuaciones de 1er grado y problemas solu...
Publicidad

Más de tinardo (15)

PPTX
Limite
PPTX
Ejercicios resueltos de analisis matematico 1
PDF
Lacan jacques la significacion del falo
PDF
Examenes ingreso matematica 2014 1
PDF
Examenes de ingreso 2017 3
PDF
Examenes ingreso matematica 2014 1
PDF
Ejercicios de limites indeterminados
PDF
Ejercicios movimiento rectilineo con solucion
PDF
Problemas ecuaciones cuadraticas repaso
PDF
sistemas-conservativos-y-no-conservativos
DOC
Ejercicioscinematica
PDF
Problemas de arquimedes 2 resueltos
PDF
Unidad 3 matematica
DOC
Fisica todos los problemas
PDF
Formulas de-movimiento-circular-uniforme-y-uniformemente-variado
Limite
Ejercicios resueltos de analisis matematico 1
Lacan jacques la significacion del falo
Examenes ingreso matematica 2014 1
Examenes de ingreso 2017 3
Examenes ingreso matematica 2014 1
Ejercicios de limites indeterminados
Ejercicios movimiento rectilineo con solucion
Problemas ecuaciones cuadraticas repaso
sistemas-conservativos-y-no-conservativos
Ejercicioscinematica
Problemas de arquimedes 2 resueltos
Unidad 3 matematica
Fisica todos los problemas
Formulas de-movimiento-circular-uniforme-y-uniformemente-variado

Último (20)

PDF
Guia de Tesis y Proyectos de Investigacion FS4 Ccesa007.pdf
PDF
Unidad de Aprendizaje 5 de Educacion para el Trabajo EPT Ccesa007.pdf
PDF
Mi Primer Millon - Poissant - Godefroy Ccesa007.pdf
PPTX
Welcome to the 8th Physical Science Class 2025-2026
PDF
Híper Mega Repaso Histológico Bloque 3.pdf
PDF
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
PDF
Unidad de Aprendizaje 5 de Matematica 1ro Secundaria Ccesa007.pdf
PDF
PFB-MANUAL-PRUEBA-FUNCIONES-BASICAS-pdf.pdf
PDF
ACERTIJO Súper Círculo y la clave contra el Malvado Señor de las Formas. Por ...
PDF
Tomo 1 de biologia gratis ultra plusenmas
PDF
La Evaluacion Formativa en Nuevos Escenarios de Aprendizaje UGEL03 Ccesa007.pdf
PPTX
Doctrina 1 Soteriologuia y sus diferente
DOCX
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
PDF
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
PDF
DI, TEA, TDAH.pdf guía se secuencias didacticas
DOCX
V UNIDAD - SEGUNDO GRADO. del mes de agosto
PDF
biología es un libro sobre casi todo el tema de biología
DOCX
PLANES DE área ciencias naturales y aplicadas
PDF
Atencion prenatal. Ginecologia y obsetricia
PDF
CONFERENCIA-Deep Research en el aula universitaria-UPeU-EduTech360.pdf
Guia de Tesis y Proyectos de Investigacion FS4 Ccesa007.pdf
Unidad de Aprendizaje 5 de Educacion para el Trabajo EPT Ccesa007.pdf
Mi Primer Millon - Poissant - Godefroy Ccesa007.pdf
Welcome to the 8th Physical Science Class 2025-2026
Híper Mega Repaso Histológico Bloque 3.pdf
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
Unidad de Aprendizaje 5 de Matematica 1ro Secundaria Ccesa007.pdf
PFB-MANUAL-PRUEBA-FUNCIONES-BASICAS-pdf.pdf
ACERTIJO Súper Círculo y la clave contra el Malvado Señor de las Formas. Por ...
Tomo 1 de biologia gratis ultra plusenmas
La Evaluacion Formativa en Nuevos Escenarios de Aprendizaje UGEL03 Ccesa007.pdf
Doctrina 1 Soteriologuia y sus diferente
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
DI, TEA, TDAH.pdf guía se secuencias didacticas
V UNIDAD - SEGUNDO GRADO. del mes de agosto
biología es un libro sobre casi todo el tema de biología
PLANES DE área ciencias naturales y aplicadas
Atencion prenatal. Ginecologia y obsetricia
CONFERENCIA-Deep Research en el aula universitaria-UPeU-EduTech360.pdf

Ejercicios de sistemas de ecuaciones

  • 1. 1 EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: b) Resuelve por reducción: Ejercicio nº 2.- a) Resuelve por igualación: b) Resuelve por reducción: Ejercicio nº 3.- a Resuelve por sustitución: b Resuelve por reducción: Ejercicio nº 4.- a) Resuelve por sustitución: b) Resuelve por igualación: Ejercicio nº 5.- a Resuelve por igualación: b Resuelve por reducción:    5 2 1 3 3 5 x y x y         2 6 4 3 14 x y x y        5 2 2 2 2 x y x y        5 3 2 4 12 x y x y          3 5 15 2 3 9     x y x y    4 6 2 6 5 1     x y x y    2 3 14 3 14 x y x y          2 3 2 6 12 1 x y x y         5 2 11 2 3 12     x y x y    2 4 7 3 5 4      x y x y
  • 2. 2 Ejercicio nº 6.- Resuelve cada uno de los siguientes sistemas: Ejercicio nº 7.- Resuelve los siguientes sistemas: Ejercicio nº 8.- Resuelve los siguientes sistemas: Ejercicio nº 9.- Resuelve estos sistemas: Ejercicio nº 10.- Resuelve los siguientes sistemas:    a) 2 1 3 10 x y x y          b) 2 4 2 4 3 x y x y         a) 4 1 2 5 x y x y         b) 3 4 6 2 1 x y x y         a) 3 2 4 2 2 x y x y         b) 4 5 3 12 15 x y x y        a) 2 3 1 3 2 4 x y x y        b) 4 3 5 8 6 10 x y x y         a) 4 9 2 2 2 x y x y      
  • 3. 3 Ejercicio nº 11.- Resuelve este sistema: Ejercicio nº 12.- Resuelve el siguiente sistema: Ejercicio nº 13.- Resuelve el siguiente sistema: Ejercicio nº 14.- Resuelve este sistema de ecuaciones: Ejercicio nº 15.- Resuelve el sistema: Ejercicio nº 16.- a Busca dos pares de valores que sean solución de la ecuación 5x  4y  1. b Representa gráficamente la recta 5x  4y  1.    b) 5 4 3 10 8 6 x y x y                2 4 9 3 2 2 1 4 2 3 2 3 3 x y x y x              2 1 3 11 2 3 6 2 1 6 5 10 5 x y x y                 3 2 13 4 3 3 2 2 3 13 3 2 6 x y y y x x                  2 1 3 3 3 5 3 12 x y x y x                7 9 2 4 15 2 2 5 1 25 x y x x y        
  • 4. 4 c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación? Ejercicio nº 17.- a Obtén dos puntos de la recta 3x  2y  1 y represéntala gráficamente. b ¿Alguno de los dos puntos obtenidos en el apartado anterior es solución de la ecuación 3x  2y  1? c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta? Ejercicio nº 18.- a Representa gráficamente la recta 5x  2y  3. b ¿Cuántas soluciones tiene la ecuación 5x  2y  3? Obtén dos de sus soluciones. c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta? Ejercicio nº 19.- A la vista de la siguiente gráfica: a Obtén tres puntos de la recta ax  by  c. b Halla tres soluciones de la ecuación ax  by  c. c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación? Ejercicio nº 20.- a De los siguientes pares de valores: c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación? Ejercicio nº 21.- Averigua cuántas soluciones tiene el siguiente sistema de ecuaciones, representando las dos rectas en los mismos ejes:                      3 2 1 0, 10 ; , 19 ; 1, 4 ; 0, ; , 7 2 5 2    1 ¿cuáles son soluciones de la ecuación 3 5? 2 x y   1 b) Representa gráficamente la recta 3 5. 2 x y  
  • 5. 5 Ejercicio nº 22.- a Representa en los mismos ejes el siguiente par de rectas e indica el punto en el que se cortan: b ¿Cuántas soluciones tiene el sistema anterior? Ejercicio nº 23.- a Representa en los mismos ejes las rectas: b ¿Qué dirías acerca de la solución del sistema anterior? Ejercicio nº 24.- a Representa en los mismos ejes las rectas: b ¿En qué punto o puntos se cortan? ¿Cuántas soluciones tendrá el sistema? Ejercicio nº 25.- a Representa en los mismos ejes las rectas: b ¿Cuántas soluciones tiene el sistema anterior? ¿Cuáles son?    5 2 2 2       x y x y    2 2 1     x y x y    2 1 2 2      x y x y    1 2 2 2 x y x y          2 0 2 4      x y x y
  • 6. 6 PROBLEMAS DE SISTEMAS DE ECUACIONES Problema nº 1.- Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas cifras, el número obtenido es 36 unidades mayor que el inicial. Problema nº 2.- En un triángulo rectángulo, uno de sus ángulos agudos es 12 mayor que el otro. ¿Cuánto miden sus tres ángulos? Problema nº 3.- La distancia entre dos ciudades, A y B, es de 255 km. Un coche sale de A hacia B a una velocidad de 90 km/h. Al mismo tiempo, sale otro coche de B hacia A a una velocidad de 80 km/h. Suponiendo su velocidad constante, calcula el tiempo que tardan en encontrarse, y la distancia que ha recorrido cada uno hasta el momento del encuentro. Problema nº 4.- Halla un número de dos cifras sabiendo que la primera cifra es igual a la tercera parte de la segunda; y que si invertimos el orden de sus cifras, obtenemos otro número que excede en 54 unidades al inicial. Problema nº 5.- La base mayor de un trapecio mide el triple que su base menor. La altura del trapecio es de 4 cm y su área es de 24 cm2 . Calcula la longitud de sus dos bases. Problema nº 6.- La razón entre las edades de dos personas es de 2/3. Sabiendo que se llevan 15 años, ¿cuál es la edad de cada una de ellas? Problema nº 7.- Un número excede en 12 unidades a otro; y si restáramos 4 unidades a cada uno de ellos, entonces el primero sería igual al doble del segundo. Plantea un sistema y resuélvelo para hallar los dos números. Problema nº 8.- El perímetro de un triángulo isósceles es de 19 cm. La longitud de cada uno de sus lados iguales excede en 2 cm al doble de la longitud del lado desigual. ¿Cuánto miden los lados del triángulo? Problema nº 9.- Pablo y Alicia llevan entre los dos 160 €. Si Alicia le da 10 € a Pablo, ambos tendrán la misma cantidad. ¿Cuánto dinero lleva cada uno? Problema nº 10.- La suma de las tres cifras de un número capicúa es igual a 12. La cifra de las decenas excede en 4 unidades al doble de la cifra de las centenas. Halla dicho número.
  • 7. 7 Problema nº 11.- El perímetro de un rectángulo es de 22 cm, y sabemos que su base es 5 cm más larga que su altura. Plantea un sistema de ecuaciones y resuélvelo para hallar las dimensiones del rectángulo. Problema nº 12.- Hemos mezclado dos tipos de líquido; el primero de 0,94 €/litro, y el segundo, de 0,86 €/litro, obteniendo 40 litros de mezcla a 0,89 €/litro. ¿Cuántos litros hemos puesto de cada clase? Problema nº 13.- El doble de un número más la mitad de otro suman 7; y, si sumamos 7 al primero de ellos, obtenemos el quíntuplo del otro. Plantea un sistema de ecuaciones y resuélvelo para hallar dichos números. Problema nº 14.- Dos de los ángulos de un triángulo suman 122. El tercero de sus ángulos excede en 4 grados al menor de los otros dos. ¿Cuánto miden los ángulos del triángulo? Problema nº 15.- Una persona invierte en un producto una cantidad de dinero, obteniendo un 5% de beneficio. Por otra inversión en un segundo producto, obtiene un beneficio del 3,5%. Sabiendo que en total invirtió 10 000 €, y que los beneficios de la primera inversión superan en 300 € a los de la segunda, ¿cuánto dinero invirtió en cada producto?
  • 8. 8 SOLUCIONES A LOS EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: b) Resuelve por reducción: Solución: 2x  y  6  y  6  2x  6  4  2 Solución: x  2 ; y  2 Ejercicio nº 2.- a) Resuelve por igualación: b) Resuelve por reducción: Solución:    5 2 1 3 3 5 x y x y         2 6 4 3 14 x y x y     1 5 a) 5 2 1 2 1 5 3 15 3 3 5 3 5 6 3 15 103 3 5 2 2 x x y y x x x x x xx y                               7 1 21 7 21 3 x x        5 1 1 5 8 43 2 2 6 3 x y       1 4 : ; 3 3 Solución x y   b) 2 6 4 3 14 x y x y         3 6 3 18 4 3 14 x y x y           Sumando: 2 4 2x x        5 2 2 2 2 x y x y        5 3 2 4 12 x y x y       a) 5 2 2 2 2 x y x y       
  • 9. 9 Solución: x  0 ; y  3 Ejercicio nº 3.- a Resuelve por sustitución: b Resuelve por reducción: Solución: Solución: x  0 ; y  3 2 2 2 2 8 2 2 2 2 2 10 10 12 85 5 12 3 2 2 y x y y y y y y x y                      2 4 2 2 2 2 3 3 3 2 2 : ; 3 3 x Solución x y              b) 5 3 2 4 12 x y x y          4 20 4 12 2 4 12 x y x y          Sumando: 18 0 0x x          5 3 5 3 3x y x y y    3 5 15 2 3 9     x y x y    4 6 2 6 5 1     x y x y 15 5 3 5 15a) 3 15 5 30 10 2 3 9 3 9 30 10 9 272 3 9 3 3 y x y x y y y y y yx y                               57 19 57 3 19 y y          15 5 15 5 3 0 0 3 3 3 y x        b) 4 6 2 6 5 1 x y x y          5 6 20 30 10 36 30 6 x y x y           4 1 Sumando: 16 4 16 4 x x       1 3 1 4 6 2 4 6 2 1 6 2 6 3 4 6 2 x y y y y y                      1 1 : ; 4 2 Solución x y  
  • 10. 10 Ejercicio nº 4.- a) Resuelve por sustitución: b) Resuelve por igualación: Solución: Solución: x  4 ; y  2 Ejercicio nº 5.- a Resuelve por igualación: b Resuelve por reducción: Solución: Solución: x  3 ; y  2    2 3 14 3 14 x y x y          2 3 2 6 12 1 x y x y       a) 2 3 14 2 3 3 14 14 2 9 42 14 3 14 3 14 x y x x x x x y y x                      28 7 28 4 7 x x         3 4 14 12 14 2y         2 2b) 2 3 2 2 2 1 63 8 8 1 6 3 121 6 6 12 1 12 xx y y x x x x x yx y                          7 1 14 7 14 2 x x           2 2 1 22 2 1 3 3 3 x y      1 1 : ; 2 3 Solución x y     5 2 11 2 3 12     x y x y    2 4 7 3 5 4      x y x y 11 25 2 11a) 11 2 12 35 5 212 3 2 3 12 2 yx y x y y y xx y                   38 22 4 60 15 38 19 2 19 y y y y             11 2 211 2 15 3 5 5 5 y x       
  • 11. 11 Ejercicio nº 6.- Resuelve cada uno de los siguientes sistemas: Solución: Solución: x  3 ; y  1 Ejercicio nº 7.- Resuelve los siguientes sistemas: Solución: Solución: x  3 ; y  1 b) 2 4 7 3 5 4 x y x y         3 2 6 12 21 6 10 8 x y x y          29 Sumando: 2 29 2 y y   29 51 2 4 7 2 4 7 2 58 7 2 51 2 2 x y x x x x                        51 29 : ; 2 2 Solución x y     a) 2 1 3 10 x y x y          b) 2 4 2 4 3 x y x y      a) 2 1 3 10 x y x y            1 2 3 1 2 10 3 6 10 7 7 1 x y y y y y y y                       1 2 1 2 1 1 2 3x y         b) 2 4 2 4 3 x y x y           2 4 2 2 4 4 3 4 8 4 3 0 11 No tiene solución. y x y y y y                  a) 4 1 2 5 x y x y         b) 3 4 6 2 1 x y x y      a) 4 1 2 5 x y x y           1 4 2 1 4 5 2 8 5 7 7 1 x y y y y y y y                    1 4 1 4 1 3x y       b) 3 4 6 2 1 x y x y           4 3 6 2 4 3 1 6 8 6 1 0 9 No tiene solución. y x x x x x                
  • 12. 12 Ejercicio nº 8.- Resuelve los siguientes sistemas: Solución: Solución: x  0 ; y  2 El sistema tiene infinitas soluciones. Ejercicio nº 9.- Resuelve estos sistemas: Solución: Solución: x  2 ; y  1 No tiene solución.    a) 3 2 4 2 2 x y x y         b) 4 5 3 12 15 x y x y     a) 3 2 4 2 2 x y x y          3 2 2 2 4 3 4 4 4 7 0 0 2 2 x x x x x x y x                  2 2 2 2 0 2y x      b) 4 5 3 12 15 x y x y          5 4 3 5 4 12 15 15 12 12 15 0 0 x y y y y y                 a) 2 3 1 3 2 4 x y x y        b) 4 3 5 8 6 10 x y x y      a) 2 3 1 3 2 4 x y x y          2 3 4 6 2 9 6 12 x y x y           Sumando: 5 10 2x x               2 3 1 4 3 1 3 3 1x y y y y b) 4 3 5 8 6 10 x y x y         2 8 6 10 8 6 10 x y x y         Sumando: 0 20
  • 13. 13 Ejercicio nº 10.- Resuelve los siguientes sistemas: Solución: Solución: x  2 ; y  1 El sistema tiene infinitas soluciones. Ejercicio nº 11.- Resuelve este sistema: Solución: Solución: x  2 ; y  1 Ejercicio nº 12.- Resuelve el siguiente sistema:    a) 4 9 2 2 2 x y x y          b) 5 4 3 10 8 6 x y x y       a) 4 9 2 2 2 x y x y          4 9 1 x y x y         4 9 1 5 10 2x x x x            4 9 4 2 9 8 9 1y x          b) 5 4 3 10 8 6 x y x y          2 10 8 6 10 8 6 x y x y          Sumando: 0 0          2 4 9 3 2 2 1 4 2 3 2 3 3 x y x y x             2 4 2 8 99 4 16 3 273 2 23 2 2 3 2 4 3 6 3 2 41 4 22 3 2 3 33 3 x x yy x y x x y x x yx y x                                    4 3 11 4 3 11 4 8 2 6 6 1 x y x x x y y                      2 1 3 11 2 3 6 2 1 6 5 10 5 x y x y         
  • 14. 14 Solución: Solución: x  3 ; y  1 Ejercicio nº 13.- Resuelve el siguiente sistema: Solución: Solución: x  1 ; y  1 Ejercicio nº 14.- Resuelve este sistema de ecuaciones: Solución: 2 1 3 11 6 3 2 6 11 6 2 20 3 102 3 6 2 1 6 4 1 12 4 11 4 11 5 10 5 x y x y x y x y x y x y x y x y                                             10 3 10 3 4 11 21 7 3 4 11 y x x x x x y x                 10 3 10 3 3 10 9 1y x               3 2 13 4 3 3 2 2 3 13 3 2 6 x y y y x x           3 2 13 4 3 3 2 2 3 13 3 2 6 x y y y x x             3 2 12 13 3 10 13 4 2 3 13 8 4 9 13 3 2 6 x y y x y y x x y x x                     3 10 13 5 8 13 x y x y           5 3 15 50 65 15 24 39 x y x y         Sumando: 26 26 1y y   3 10 13 3 10 13 3 3 1x y x x x                  2 1 3 3 3 5 3 12 x y x y x             2 1 3 3 3 5 3 12 x y x y x            2 2 3 3 3 15 3 3 12 x y x y x              2 2 3 9 6 3 3 x y x y            2 3 11 2 1 x y x y            1 2 3 11 2 1 x y x y         Sumando: 2 10 5y y   2 1 2 5 1 2 4 2x y x x x          
  • 15. 15 Solución: x  2 ; y  5 Ejercicio nº 15.- Resuelve el sistema: Solución: Solución: x  2 ; y  4 Ejercicio nº 16.- a Busca dos pares de valores que sean solución de la ecuación 5x  4y  1. b Representa gráficamente la recta 5x  4y  1. c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación? Solución: Le damos valores a x y obtenemos, por ejemplo, los puntos: x  1  y  1  Punto 1, 1 x  3  y  4  Punto 3, 4 b Utilizamos los dos puntos obtenidos en el apartado anterior: c Los puntos de la recta son las soluciones de la ecuación.        7 9 2 4 15 2 2 5 1 25 x y x x y           7 9 2 4 15 2 2 5 1 25 x y x x y             7 9 2 4 30 5 5 5 25 x y x x y             5 9 26 5 5 30 x y x y          ( 1) 5 9 26 5 5 30 x y x y         56 Sumando: 14 56 4 14 y y         5 5 30 6 4 6 2x y x y x x          5 1 a) 5 4 1 5 1 4 4 x x y x y y        
  • 16. 16 Ejercicio nº 17.- a Obtén dos puntos de la recta 3x  2y  1 y represéntala gráficamente. b ¿Alguno de los dos puntos obtenidos en el apartado anterior es solución de la ecuación 3x  2y  1? c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta? Solución: Damos valores a x y obtenemos los puntos: x  1  y  1  Punto 1, 1 x  1  y  2  Punto 1, 2 b Los dos puntos obtenidos son solución de la ecuación. c Los puntos de la recta son las soluciones de la ecuación. Ejercicio nº 18.- a Representa gráficamente la recta 5x  2y  3. b ¿Cuántas soluciones tiene la ecuación 5x  2y  3? Obtén dos de sus soluciones. c ¿Qué relación hay entre las soluciones de la ecuación y los puntos de la recta? Solución: Le damos valores a x y obtenemos, por ejemplo, los puntos: x  1  y  1  Punto 1, 1 x  1  y  4  Punto 1, 4 b Tiene infinitas soluciones. Dos de ellas son, por ejemplo, 1, 1 y 1, 4. 3 1 a) 3 2 1 3 1 2 2 x x y x y y              3 5 a) 5 2 3 2 x x y y
  • 17. 17 c Los puntos de la recta son las soluciones de la ecuación. Ejercicio nº 19.- A la vista de la siguiente gráfica: a Obtén tres puntos de la recta ax  by  c. b Halla tres soluciones de la ecuación ax  by  c. c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación? Solución: a Por ejemplo: 0, 0; 2, 1; 4, 2. b Por ejemplo: 0, 0; 2, 1; 4, 2. c Los puntos de la recta son las soluciones de la ecuación. Ejercicio nº 20.- a De los siguientes pares de valores: c ¿Qué relación hay entre los puntos de la recta y las soluciones de la ecuación? Solución: a Sustituimos cada uno de ellos en la ecuación:                      3 2 1 0, 10 ; , 19 ; 1, 4 ; 0, ; , 7 2 5 2    1 ¿cuáles son soluciones de la ecuación 3 5? 2 x y   1 b) Representa gráficamente la recta 3 5. 2 x y               1 0,10 3 0 10 5 0,10 es solución. 2 3 3 1 3 ,19 3 19 5 ,19 es solución. 2 2 2 2 1 1, 4 3 1 4 1 1, 4 no es solución. 2 2 1 2 1 2 0, 3 0 0, no es solución. 5 2 5 5 5 1 1 1 , 7 3 2 2 2                                                                          1 7 5 , 7 es solución. 2         
  • 18. 18 c Los puntos de la recta son las soluciones de la ecuación. Ejercicio nº 21.- Averigua cuántas soluciones tiene el siguiente sistema de ecuaciones, representando las dos rectas en los mismos ejes: Solución: Representamos las dos rectas obteniendo dos puntos de cada una de ellas: x  y  5  y  x  5 2x  2y  2  x  y  1  y  x  1 Son paralelas. El sistema no tiene solución.         1 b) Tomamos dos puntos de la recta, por ejemplo 0,10 y , 7 , y la representamos: 2    5 2 2 2       x y x y 0 5 0 1 1 4 1 2 x y x y 
  • 19. 19 Ejercicio nº 22.- a Representa en los mismos ejes el siguiente par de rectas e indica el punto en el que se cortan: b ¿Cuántas soluciones tiene el sistema anterior? Solución: a Representamos las dos rectas obteniendo dos puntos de cada una de ellas: b Hay una solución: 1, 0 es decir, x  1 , y  0. Ejercicio nº 23.- a Representa en los mismos ejes las rectas: b ¿Qué dirías acerca de la solución del sistema anterior? Solución: a Obtenemos dos puntos de cada una de las rectas para representarlas:    2 2 1     x y x y            2 2 2 2 1 1 0 2 0 1 1 0 1 0 x y y x x y y x x y x y    2 1 2 2      x y x y 2 1 2 1 2 2 2 2 0 1 0 2 1 3 1 0 x y y x x y x y x y x y            
  • 20. 20 Son paralelas. b El sistema no tiene solución, es incompatible, ya que las rectas no se cortan. Ejercicio nº 24.- a Representa en los mismos ejes las rectas: b ¿En qué punto o puntos se cortan? ¿Cuántas soluciones tendrá el sistema? Solución: a Representamos las rectas obteniendo dos puntos de cada una de ellas: x  y  1  y  x  1 2x  2y  2  x  y  1  y  x  1 b Se cortan en todos sus puntos, puesto que se trata de la misma recta. El sistema tendrá infinitas soluciones: todos los puntos de la recta.    1 2 2 2 x y x y       0 1 Es la misma recta. 1 2 x y
  • 21. 21 Ejercicio nº 25.- a Representa en los mismos ejes las rectas: b ¿Cuántas soluciones tiene el sistema anterior? ¿Cuáles son? Solución: a Representamos las rectas obteniendo dos puntos de cada una de ellas: b Tiene una solución: 2, 1 es decir, x  2, y  1.    2 0 2 4      x y x y                   4 2 0 2 2 4 2 4 2 2 0 0 0 2 2 1 2 3 x x x y y x y x y y x y x y x y
  • 22. 22 SOLUCIONES A LOS PROBLEMAS DE SISTEMAS DE ECUACIONES Problema nº 1.- Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas cifras, el número obtenido es 36 unidades mayor que el inicial. Solución: Llamamos x a la primera cifra del número la de las decenas e y a la segunda la de las unidades). Así, el número será 10x  y. Tenemos que: y  10  x  10  3  7 El número buscado es el 37. Problema nº 2.- En un triángulo rectángulo, uno de sus ángulos agudos es 12 mayor que el otro. ¿Cuánto miden sus tres ángulos? Solución: Llamamos x e y a los ángulos agudos del triángulo: Tenemos que: x  y  12  39  12  51 Los ángulos miden 39, 51 y 90. Problema nº 3.- La distancia entre dos ciudades, A y B, es de 255 km. Un coche sale de A hacia B a una velocidad de 90 km/h. Al mismo tiempo, sale otro coche de B hacia A a una velocidad de 80 km/h. Suponiendo su velocidad constante, calcula el tiempo que tardan en encontrarse, y la distancia que ha recorrido cada uno hasta el momento del encuentro. 10 10 10 10 10 36 9 9 36 4 x y x y x y y x x y x y x y                           10 10 4 6 2 3 4 y x x x x x y x                 12 12 78 12 90 2 78 39 90 90 2 x y x y y y y y x y x y                     
  • 23. 23 Solución: Llamamos x a la distancia que recorre el coche que sale de A hasta encontrarse. Sabemos que e  v · t, donde e representa el espacio recorrido, v la velocidad y t el tiempo. Por tanto: x  90t  90 · 1,5  135 km  255  x  255  135  120 km Tardan 1,5 horas una hora y media en encontrarse. El coche que salió de A llevaba recorridos 135 km; y el que salió de B, llevaba 120 km. Problema nº 4.- Halla un número de dos cifras sabiendo que la primera cifra es igual a la tercera parte de la segunda; y que si invertimos el orden de sus cifras, obtenemos otro número que excede en 54 unidades al inicial. Solución: Llamamos x a la primera cifra del número la de las decenas e y a la segunda cifra la de las unidades. Así, el número será 10x  y. Tenemos que: y  3x  3 ·3  9 El número buscado es el 39. Problema nº 5.- La base mayor de un trapecio mide el triple que su base menor. La altura del trapecio es de 4 cm y su área es de 24 cm2 . Calcula la longitud de sus dos bases. Solución: Llamamos x a la base menor e y a la base mayor. Tenemos que: 90 255 255 80 255 90 80 255 170 1,5 horas 170 x t x t t t t t              3 3 54 10 10 54 30 10 3 54 18 54 3 18 y x x y y x x y x x x x x x                    
  • 24. 24 y  3x  3 · 3  9 La base menor mide 3 cm y la base mayor, 9 cm. Problema nº 6.- La razón entre las edades de dos personas es de 2/3. Sabiendo que se llevan 15 años, ¿cuál es la edad de cada una de ellas? Solución: Llamamos x e y a las edades de cada uno. Tenemos que: Tienen 30 y 45 años. Problema nº 7.- Un número excede en 12 unidades a otro; y si restáramos 4 unidades a cada uno de ellos, entonces el primero sería igual al doble del segundo. Plantea un sistema y resuélvelo para hallar los dos números. Solución: Hagamos una tabla para entender mejor la situación: Tenemos que: x  y  12  16  12  28 Los números son el 28 y el 16. Problema nº 8.- El perímetro de un triángulo isósceles es de 19 cm. La longitud de cada uno de sus lados iguales excede en 2 cm al doble de la longitud del lado desigual. ¿Cuánto miden los lados del triángulo? Solución: Llamamos x a la longitud de cada uno de los dos lados iguales e y a la del lado desigual.   3 3 3 4 2 2 24 12 3 12 4 12 324 2 y x y x y x x y x y x y x x x x                            2 3 2 3 2 15 3 2 30 30 3 15 x x y x x x x x y y x                 15 30 15 45y x     SI RESTAMOS 4 PRIMER NÚMERO x x  4 SEGUNDO NÚMERO y y  4   12 12 4 2 4 12 4 2 8 16 x y x y x y y y y                 
  • 25. 25 Tenemos que: x  2y  2  2 · 3  2  6  2  8 Los lados iguales miden 8 cm cada uno; y el lado desigual mide 3 cm. Problema nº 9.- Pablo y Alicia llevan entre los dos 160 €. Si Alicia le da 10 € a Pablo, ambos tendrán la misma cantidad. ¿Cuánto dinero lleva cada uno? Solución: Llamamos x a la cantidad de dinero que lleva Pablo e y a la que lleva Alicia. Tenemos que: x  y  20  90  20  70 Pablo lleva 70 € y Alicia, 90 €. Problema nº 10.- La suma de las tres cifras de un número capicúa es igual a 12. La cifra de las decenas excede en 4 unidades al doble de la cifra de las centenas. Halla dicho número. Solución: Llamamos x a la cifra de las centenas que coincide con la de las unidades, por ser el número capicúa e y a la de las decenas. Así, tenemos que: El número que buscamos es el 282. Problema nº 11.- El perímetro de un rectángulo es de 22 cm, y sabemos que su base es 5 cm más larga que su altura. Plantea un sistema de ecuaciones y resuélvelo para hallar las dimensiones del rectángulo. Solución: Llamamos x a la base e y a la altura.   2 19 2 2 2 19 4 4 19 5 15 3 2 2 x y y y y y y y x y                   160 20 160 2 180 90 10 10 20 x y y y y y x y x y                  2 12 12 2 2 4 2 4 12 2 2 4 8 4 2 8 x y y x y x y x x x x x y                        
  • 26. 26 Tenemos que: x  y  5  3  5  8 La base mide 8 cm y la altura, 3 cm. Problema nº 12.- Hemos mezclado dos tipos de líquido; el primero de 0,94 €/litro, y el segundo, de 0,86 €/litro, obteniendo 40 litros de mezcla a 0,89 €/litro. ¿Cuántos litros hemos puesto de cada clase? Solución: Hacemos una tabla para organizar la información: Tenemos que: y  40  x  40  15  25 Hemos puesto 15 litros del primer tipo y 25 litros del segundo. Problema nº 13.- El doble de un número más la mitad de otro suman 7; y, si sumamos 7 al primero de ellos, obtenemos el quíntuplo del otro. Plantea un sistema de ecuaciones y resuélvelo para hallar dichos números. Solución: Llamamos x al primer número e y al segundo. Así, tenemos que: y  14  4x  14  4 · 3  14  12  2 2 2 22 11 5 11 2 6 3 5 5 x y x y y y y y x y x y                     1er TIPO 2º TIPO MEZCLA N. LITROS x y 40 PRECIO/LITRO (euros) 0,94 0,86 0,89 PRECIO TOTAL (euros) 0,94x 0,86y 35,6   4040 0,94 0,86 40 35,60,94 0,86 35,6 y xx y x xx y              1,2 0,94 34,4 0,86 35,6 0,08 1,2 15 0,08 x x x x           14 44 142 7 2 7 5 14 47 5 7 5 y y xx yx x xx y x y                   63 7 70 20 21 63 3 21 x x x x        
  • 27. 27 Los números son el 3 y el 2. Problema nº 14.- Dos de los ángulos de un triángulo suman 122. El tercero de sus ángulos excede en 4 grados al menor de los otros dos. ¿Cuánto miden los ángulos del triángulo? Solución: Uno de los ángulos mide x; el otro, 122  x, y el tercero, y. Tenemos que: Los ángulos miden 54, 58 y 122°  54°  68. Problema nº 15.- Una persona invierte en un producto una cantidad de dinero, obteniendo un 5% de beneficio. Por otra inversión en un segundo producto, obtiene un beneficio del 3,5%. Sabiendo que en total invirtió 10 000 €, y que los beneficios de la primera inversión superan en 300 € a los de la segunda, ¿cuánto dinero invirtió en cada producto? Solución: Hacemos una tabla: Tenemos que: y  10000  x  10000  8000  2000 Invirtió 8000 € en el primer producto y 2000 € en el segundo. 4 4 4 58 54 122 180 58 y x y x x x x y x y                   4 54 4 58y x      INVERSIÓN BENEFICIO PRIMER PRODUCTO x 0,05x SEGUNDO PRODUCTO y 0,035y   1000010000 0,05 0,035 10000 3300,05 0,035 330 y xx y x xx y              680 0,05 350 0,035 330 0,085 680 8000 0,085 x x x x        