2
Lo más leído
9
Lo más leído
11
Lo más leído
1INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química
PRÁCTICA #8
“Comprobación de la Ecuación de Bernoulli”
OBJETIVO GENERAL:
Comprobar experimentalmente la forma en que varía la presión con respecto a diferentes
diámetros en la aplicación de la ecuación de Bernoulli.
Objetivos Específicos:
- Utilizar la mesa para hidrodinámica para medir las variaciones de presión en un
tubo de Venturi.
- Modificar el caudal del fluido para observar la variación de la presión con respecto
a la velocidad.
- Comparar los resultados obtenidos experimentalmente con los calculados
teóricamente.
- Capturar evidencia visual del experimento.
MARCO TEÓRICO:
 Ecuación de Bernoulli.
El análisis de un problema de tubería toma en
cuenta toda la energía dentro del sistema. En física
aprendimos que la energía no se crea ni se destruye,
sólo de transforma de una forma en otra. Éste es el
enunciado de la ley de conservación de la energía.
Hay tres formas de energía que se toman
siempre en consideración cuando se analiza un
problema de flujo en tuberías. Considere un
elemento de fluido como el que ilustramos en la
figura 1, dentro de una tubería en un sistema de flujo. Se localiza a cierta elevación z,
tiene velocidad v y presión p. El elemento de fluido posee las formas de energía
siguientes:
1. Energía potencial. Debido a su elevación, la energía potencial del elemento en relación
con algún nivel de referencia es:
𝐸𝑃 = 𝑤𝑧
donde w es el peso del elemento.
2. Energía cinética. Debido a su velocidad, la energía cinética del elemento es:
𝐸𝐶 = 𝑤𝑣2
2𝑔⁄
3. Energía de flujo. A veces llamada energía de presión o trabajo de flujo, y representa
la cantidad de trabajo necesario para mover el elemento de fluido a través de cierta sección
contra la presión p. La energía de flujo se abrevia EF y se calcula por medio de:
𝐸𝐹 = 𝑤𝑝 𝛾⁄
Ésta ecuación se obtiene como sigue. La figura 2
muestra al elemento de fluido en la tubería mientras
se mueve a través de una sección. La fuerza sobre
el elemento es pA, donde p es la presión en la
sección y A es el área de ésta. Al mover el elemento
a través de la sección, la fuerza recorre una
distancia L igual a la longitud del elemento. Por
tanto, el trabajo que se realiza es:
𝑇𝑟𝑎𝑏𝑎𝑗𝑜 = 𝑝𝐴𝐿 = 𝑝𝑉
Figura 1 Elemento de fluido en una tubería.
Figura 2 Energía de fluido.
2 INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química
donde V es el volumen del elemento. El peso del elemento w es:
𝑤 = 𝛾𝑉
donde 𝛾 es el peso específico del fluido. Entonces, el volumen del elemento es:
𝑉 = 𝑤 𝛾⁄
y obtenemos:
𝑇𝑟𝑎𝑏𝑎𝑗𝑜 = 𝑝𝑉 = 𝑝𝑤 𝛾⁄
denominada energía de flujo, y se representa con la ecuación:
𝐸𝐹 = 𝑤𝑝 𝛾⁄
Entonces, la cantidad total de energía de estas tres formas que posee el elemento
de fluido es la suma E:
𝐸 = 𝐸𝐹 + 𝐸𝑃 + 𝐸𝐶
𝐸 = 𝑤𝑝 𝛾⁄ + 𝑤𝑧 + 𝑤𝑣2
2𝑔⁄
Cada uno de estos términos se expresa en unidades de energía como el Newton-metro
(N∙m) en el SI, y el pie-libra (pie∙lb) en el Sistema Tradicional de Estados Unidos.
Figura 3 Elementos de fluido utilizados en la ecuación de Bernoulli.
Ahora, considere el elemento de fluido en la figura 3, que se mueve de la sección 1 a la
2. Los valores de p, z y v son diferentes en las dos secciones. En la sección 1, la energía
total es:
𝐸1 =
𝑤𝑝1
𝛾
+ 𝑤𝑧1 +
𝑤𝑣1
2
2𝑔
En la sección 2, la energía total es:
𝐸2 =
𝑤𝑝2
𝛾
+ 𝑤𝑧2 +
𝑤𝑣2
2
2𝑔
Si no hay energía que se agregue o pierda en el fluido entre las secciones 1 y 2, entonces
el principio de conservación de la energía requiere que:
𝐸1 = 𝐸2
𝑤𝑝1
𝛾
+ 𝑤𝑧1 +
𝑤𝑣1
2
2𝑔
=
𝑤𝑝2
𝛾
+ 𝑤𝑧2 +
𝑤𝑣2
2
2𝑔
El peso del elemento w es común a todos los términos y se elimina al dividir entre él. Así,
la ecuación se convierte en:
𝑝1
𝛾
+ 𝑧1 +
𝑣1
2
2𝑔
=
𝑝2
𝛾
+ 𝑧2 +
𝑣2
2
2𝑔
Conocida como ecuación de Bernoulli.
Cada término de la ecuación de Bernoulli resulta de dividir una expresión de la energía
entre el peso de un elemento del fluido. Por lo anterior: Cada término de la ecuación de
3INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química
Bernoulli es una forma de la energía que posee el fluido por unidad de peso del fluido
que se mueve en el sistema.
La unidad de cada término es energía por unidad de peso. En el sistema SI las unidades
son N∙m/N, y en el Sistema Tradicional de Estados Unidos son lb∙pie/lb.
Sin embargo, observe que la unidad de fuerza (o peso) aparece tanto en el
numerador como en el denominador, y por ello puede cancelarse. La unidad resultante es
tan solo el metro (m) o el pie, y se interpreta como una altura. En el análisis del flujo de
fluidos los términos se expresan por lo común como altura, en alusión a la altura sobre un
nivel de referencia. En específico:
𝑝 𝛾⁄ es la carga de presión.
𝑧 es la carga de elevación.
𝑣2
2𝑔⁄ es la carga de velocidad.
A la suma de estos tres términos se le denomina carga total.
Figura 4 Carga de presión, carga de elevación, carga de velocidad y carga total.
Debido a que cada término de la ecuación de Bernoulli representa una altura, un
diagrama similar al que se muestra en la figura 4 ayuda a visualizar la relación entre los
tres tipos de energía. Conforme el fluido se mueve del punto 1 al 2, la magnitud de cada
término puede cambiar su valor. Sin embargo, si el fluido no pierde o gana energía, la
carga total permanece a un nivel constante. La ecuación de Bernoulli se utiliza para
determinar valores de carga de presión, carga de elevación y cambio de la carga de
velocidad, conforme el fluido circula a través del sistema.
En la figura 4 observamos que la carga de velocidad en la sección 2 será menor
que la sección 1. Esto se demuestra por medio de la ecuación de continuidad.
𝐴1 𝑣1 = 𝐴2 𝑣2
𝑣2 = 𝑣1(𝐴1 𝐴2⁄ )
Debido a que 𝐴1 < 𝐴2, 𝑣2 debe ser menor que 𝑣1. Y como la velocidad está elevada al
cuadrado en el término de la carga de velocidad, 𝑣2
2
2𝑔⁄ es mucho menor que 𝑣1
2
2𝑔⁄ .
4 INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química
Es común que cuando crece el tamaño de la sección, como ocurre en la figura 4,
la carga de presión se incremente porque la carga de velocidad disminuye. Éste es el modo
en que se construyó la figura 4. Sin embargo, el cambio real también se ve afectado por
el cambio en la carga de elevación.
En resumen:
La ecuación de Bernoulli toma en cuenta los cambios en la carga de elevación,
carga de presión y carga de velocidad entre dos puntos en un sistema de flujo de fluido.
Se supone que no hay pérdidas o adiciones de energía entre los dos puntos, por lo que la
carga total permanece constante.
Al escribir la ecuación de Bernoulli, es esencial que las presiones en los dos puntos
de referencia se expresen ambas como presiones absolutas o ambas como presiones
manométricas. Es decir, las dos deben tener la misma presión de referencia. En la mayoría
de los problemas será conveniente utilizar la presión manométrica, debido a que algunas
partes del sistema de fluido expuestas a la atmósfera tendrán una presión manométrica
igual a cero. Asimismo, la mayoría de las presiones se les mide por medio de un medidor
con respecto a la presión atmosférica local.
 Restricciones de la ecuación de Bernoulli.
Aunque la ecuación de Bernoulli es aplicable a bastantes problemas prácticos, hay
limitaciones que debemos conocer, a fin de aplicarla con propiedad.
1. Es válida sólo para fluidos incompresibles, porque se supone que el peso específico del
fluido es el mismo en las dos secciones de interés.
2. No puede haber dispositivos mecánicos que agreguen o retiren energía del sistema entre
las dos secciones de interés, debido a que la ecuación establece que la energía en el fluido
es constante.
3. No puede haber transferencia de calor hacia el fluido o fuera de éste.
4. No puede haber pérdida de energía debido a la fricción.
En realidad ningún sistema satisface todas esas restricciones. Sin embargo, hay
muchos sistemas donde se utiliza la ecuación de Bernoulli, y sólo se generan errores
mínimos. Asimismo, el empleo de esta ecuación permite hacer una estimación rápida del
resultado, cuando esto es todo lo que se desea.
 Tanques, depósitos y toberas expuestos a la atmósfera.
Figura 5 Sifón de un problema.
La figura 5 muestra un sistema de fluido donde un sifón saca líquido desde un tanque o
depósito y lo expulsa a través de una tobera al final de la tubería. Observe que la superficie
del tanque (punto A) y la corriente libre de fluido que sale de la tobera (sección F) no
están confinadas por fronteras sólidas, sino que están expuestas a la atmósfera. Por tanto,
5INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química
la presión manométrica en dichas secciones es igual a cero. Por ello, observamos la regla
siguiente:
Cuando el fluido en un punto de referencia está expuesto a la atmósfera, la
presión es igual a cero y el término de carga de presión se cancela en la ecuación de
Bernoulli.
Puede suponerse que el tanque, de donde se toma el fluido, es muy grande en
comparación con el tamaño del área de flujo dentro de la tubería. Ahora, como 𝑣 = 𝑄 𝐴⁄ ,
la velocidad en la superficie de dicho tanque será muy pequeña. Además, cuando se utiliza
la velocidad para calcular la carga de velocidad, 𝑣2
2𝑔⁄ , la velocidad se eleva al
cuadrado. El proceso se elevar al cuadrado un número pequeño mucho menor que 1.0
produce otro número aún más pequeño. Por estas razones adoptamos la regla siguiente:
A la carga de velocidad en la superficie de un tanque o depósito se le considera igual a
cero, y se cancela en la ecuación de Bernoulli.
 Ambos puntos de referencia están en la misma tubería.
Asimismo, observe en la figura 5 que varios puntos de interés (puntos B-E) se encuentran
dentro de la tubería, cuya área de flujo es uniforme. En las condiciones de flujo estable
supuestas en estos problemas, la velocidad será la misma en todo el tubo. Entonces,
cuando existe flujo estable se aplica la regla siguiente:
Cuando los dos puntos de referencia para la ecuación de Bernoulli están dentro de una
tubería del mismo tamaño, los términos de carga de velocidad en ambos lados de la
ecuación son iguales y se cancelan.
 Las elevaciones de ambos puntos se referencia son iguales.
De manera similar, se aplica la regla siguiente cuando los puntos de referencia están al
mismo nivel:
Cuando los dos puntos de referencia para la ecuación de Bernoulli están a la misma
elevación, los términos de carga de elevación 𝑧1 y 𝑧2 son iguales y se cancelan.
Las cuatro observaciones anteriores permiten la simplificación de la ecuación de
Bernoulli y facilitan las manipulaciones algebraicas.
 Medidores Venturi.
En la figura 7 se muestra el aspecto básico del tubo Venturi. El flujo que viene de
la tubería principal en la sección 1 se hace acelerar a través de una sección estrecha
denominada garganta, donde la presión del fluido disminuye. Después, el flujo se
expande a través de una porción divergente que alcanza el mismo diámetro de la tubería
principal. Se coloca tomas de presión en la pared del tubo de la sección 1 y en la pared de
la garganta, a la que llamaremos sección 2. Estas tomas de presión se conectan a ambos
lados de un manómetro diferencial, de modo que la deflexión h sea una indicación de la
diferencia de presión 𝑝1 − 𝑝2. Por supuesto, es posible utilizar otros medidores de
presión diferencial.
Se emplea la ecuación de la energía y la de continuidad para obtener la relación
con que se calcula el flujo volumétrico. Con el empleo de las secciones 1 y 2 como puntos
de referencia en la figura 7, se escribe las ecuaciones siguientes:
𝑝1
𝛾
+ 𝑧1 +
𝑣1
2
2𝑔
− ℎ 𝐿 =
𝑝2
𝛾
+ 𝑧2 +
𝑣2
2
2𝑔
𝑄 = 𝐴1 𝑣1 = 𝐴2 𝑣2
6 INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química
Estas ecuaciones sólo son válidas para fluidos incompresibles, es decir, líquidos. En el
flujo de gases se debe observar con atención especial cómo varía el peso específico, 𝛾,
con el cambio de la presión. La simplificación algebraica de las ecuaciones anteriores es:
𝑣2
2
− 𝑣1
2
2𝑔
=
𝑝1 − 𝑝2
𝛾
+ (𝑧1 − 𝑧2) − ℎ 𝐿
𝑣2
2
− 𝑣1
2
= 2𝑔[(𝑝1 − 𝑝2) 𝛾⁄ + (𝑧1 − 𝑧2) − ℎ 𝐿]
Pero 𝑣2
2
= 𝑣1
2(𝐴1 𝐴2⁄ )2
. Entonces, tenemos:
𝑣1
2[(𝐴1 𝐴2⁄ )2
− 1] = 2𝑔[(𝑝1 − 𝑝2) 𝛾⁄ + (𝑧1 − 𝑧2) − ℎ 𝐿]
𝑣1 = √
2𝑔[(𝑝1 − 𝑝2) 𝛾⁄ + (𝑧1 − 𝑧2) − ℎ 𝐿]
(𝐴1 𝐴2⁄ )2 − 1
En este momento podemos hacer dos simplificaciones. En primer lugar, es común
que el tubo Venturi se instale en posición horizontal, por lo que la diferencia de elevación
𝑧1 − 𝑧2 es igual a cero. En segundo lugar, el término ℎ 𝐿 es la pérdida de energía del fluido
conforme pasa de la sección 1 a la 2. El valor de ℎ 𝐿 debe determinarse de forma
experimental. Pero es más conveniente modificar la ecuación anterior eliminando ℎ 𝐿 e
introduciendo un coeficiente de descarga C:
𝑣1 = 𝐶√
2𝑔 (𝑝1 − 𝑝2) 𝛾⁄
(𝐴1 𝐴2⁄ )2 − 1
La ecuación anterior se emplea para obtener la velocidad de flujo en la garganta del
instrumento. Observe que la velocidad depende de la diferencia en la carga de presión
entre los puntos 1 y 2. Por esa razón estos medidores reciben el nombre de medidores de
carga variable.
Lo normal es que se desee calcular el flujo volumétrico.
Como 𝑄 = 𝐴1 𝑣1, tenemos:
Figura 6 Tubo Venturi.
7INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química
𝑄 = 𝐶𝐴1√
2𝑔 (𝑝1 − 𝑝2) 𝛾⁄
(𝐴1 𝐴2⁄ )2 − 1
El coeficiente de descarga C representa la relación de la velocidad real de energía
a través del tubo Venturi, a la velocidad ideal para un Venturi sin ninguna pérdida de
energía. Por tanto, el valor de C siempre será menor que 1.0. El Venturi de tipo Herschel,
está diseñado para minimizar las pérdidas de energía con el empleo de una contracción
lisa y gradual en la garganta, y una expansión lisa y gradual después de ésta. Por ello, es
común que el coeficiente de descarga esté cerca de 1.0.
La figura 7 indica que el valor real de C depende del número de Reynolds para el
flujo en la tubería principal. Para números de Reynolds arriba de 2x105
, se toma el valor
de C igual a 0.984. Este valor se aplica al Venturi tipo Herschel, que se fabrica como
fundición rugosa con diámetro de tubería que varía en un rango muy amplio, pero la
relación d/D, llamada relación beta, o β, debe estar entre 0.30 y 0.75.
Para números de Reynolds por debajo de 2x105
, el valor de C debe leerse en la
figura 7. Es común que los medidores Venturi más pequeños, para diámetros de tubo en
el rango de 2 a 10 pulgadas (50 a 250mm), se manufacturen en máquinas, con lo que
resulta una superficie con mejor acabado que la que se obtiene con fundición. Para este
tipo, el valor de C se toma como 0.995, si 𝑁 𝑅 > 2𝑥105
. Para los Venturi hechos en
máquina no se dispone de datos de C para números de Reynolds más bajos.
Figura 7 Coeficiente de descarga para un tubo venturi fundido y rugoso de tipo Herschel.
MATERIALES:
- Agua.
- Mesa para Hidrodinámica Gunt HM 112.
- Tubo Venturi.
- 6 mangueras para presión.
PROCEDIMIENTO:
1. Limpiar la mesa para hidrodinámica.
2. Conectar la mesa a la corriente.
3. Instalar el tubo Venturi en la línea principal.
8 INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química
4. Conectar mangueras para presión.
5. Realizar purga para todas las mangueras de presión en la línea principal.
6. Abrir la válvula al máximo caudal.
7. Operar la línea y registrar la primer lectura de diferencia de presión.
8. Cerrar la válvula aproximadamente 2lts/min 5 veces y tomar lecturas de la caída
de presión.
9. Modificar los puntos de presión a medir, modificar el caudal y tomar lecturas.
10. Repetir estos pasos para todas las combinaciones de puntos de presión que se
deseen realizar.
11. Comparar los resultados obtenidos teórica y experimentalmente.
12. Limpiar el área de trabajo.
Figura 8 Tubo de Venturi. Figura 9 Colocando el Tubo Venturi.
Figura 10 Válvulas de Presión. Figura 11 Mangueras conectadas.
Figura 12 Cerrando el circuito. Figura 13 Purgando.
9INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química
Figura 14 Modificando el caudal. Figura 15 Abriendo válvulas.
Figura 16 Anotando datos obtenidos. Figura 17 Modificando puntos a medir.
Figura 18 Abriendo válvulas. Figura 19 Modificando puntos a medir.
CÁLCULOS Y RESULTADOS:
Se obtuvo la diferencia de presión entre los dos puntos a medir en cada caso utilizando
la ecuación de Bernoulli y con los cálculos se construyó la tabla siguiente:
Medición Intento
Diám. 1
(m)
Diám. 2
(m)
Q (L/min)
Dif. Presión
TEÓRICA (kPa)
Dif. Presión
EXPERIMENTO
(kPa)
P1 - P3 1 0,0284 0,014 18,6 1,902 2,300
2 0,0284 0,014 16,6 1,515 1,800
3 0,0284 0,014 14,7 1,188 1,360
4 0,0284 0,014 12,6 0,873 0,920
5 0,0284 0,014 10,6 0,618 0,565
10 INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química
P1 - P2 1 0,0284 0,0225 18,5 0,182 1,150
2 0,0284 0,0225 16,5 0,145 0,810
3 0,0284 0,0225 14,5 0,112 0,495
4 0,0284 0,0225 12,6 0,084 0,235
5 0,0284 0,0225 10,6 0,060 0,000
P1 - P4 1 0,0284 0,0172 18,4 0,751 0,820
2 0,0284 0,0172 16,4 0,597 0,620
3 0,0284 0,0172 14,5 0,467 0,455
4 0,0284 0,0172 12,4 0,341 0,250
5 0,0284 0,0172 10,4 0,240 0,065
P1 - P6 1 0,0284 0,0284 18,4 0,000 1,370
2 0,0284 0,0284 16,5 0,000 1,087
3 0,0284 0,0284 14,4 0,000 0,735
4 0,0284 0,0284 12,5 0,000 0,455
5 0,0284 0,0284 10,4 0,000 0,245
P3 - P4 1 0,014 0,0172 18,4 -1,110 -1,705
2 0,014 0,0172 16,5 -0,893 -1,515
3 0,014 0,0172 14,4 -0,680 -1,315
4 0,014 0,0172 12,5 -0,512 -1,130
5 0,014 0,0172 10,5 -0,361 -0,955
P3 - P5 1 0,014 0,0242 18,4 -1,757 -2,205
2 0,014 0,0242 16,4 -1,396 -1,885
3 0,014 0,0242 14,5 -1,091 -1,605
4 0,014 0,0242 12,5 -0,811 -1,315
5 0,014 0,0242 10,4 -0,561 -1,080
P3 - P6 1 0,014 0,0284 18,4 -1,861 -1,255
2 0,014 0,0284 16,3 -1,461 -1,045
3 0,014 0,0284 14,3 -1,124 -0,920
4 0,014 0,0284 12,4 -0,845 -0,830
5 0,014 0,0284 10,5 -0,606 -0,770
P4-P5 1 0,0172 0,0242 18,4 -0,647 -1,005
2 0,0172 0,0242 16,3 -0,508 -0,905
3 0,0172 0,0242 14,3 -0,391 -0,805
4 0,0172 0,0242 12,4 -0,294 -0,720
5 0,0172 0,0242 10,4 -0,207 -0,685
P4-P6 1 0,0172 0,0284 18,4 -0,751 -0,005
2 0,0172 0,0284 16,2 -0,583 -0,085
3 0,0172 0,0284 14,5 -0,467 -0,155
4 0,0172 0,0284 12,3 -0,336 -0,235
5 0,0172 0,0284 10,4 -0,240 -0,305
P5-P6 1 0,0242 0,0284 18,3 -0,104 1,510
2 0,0242 0,0284 16,5 -0,084 1,213
3 0,0242 0,0284 14,1 -0,062 0,830
4 0,0242 0,0284 12,3 -0,047 0,580
5 0,0242 0,0284 10,4 -0,033 0,335
11INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química
Donde los puntos a medir, estuvieron distribuidos de ésta forma:
ANÁLISIS:
Con los resultados obtenidos nos pudimos dar cuenta de que, la diferencia de presión
entre los puntos 1 y 3 será positiva, ya que la velocidad es menor en el primer punto que
en el segundo y se necesitaría mayor presión para que el fluido fluya por ahí; y será mayor
que la diferencia de presión entre los puntos 1 y 2, ya que la diferencia de diámetros, y
por ende, de velocidades, es mayor. Esto se comprobó de forma teórica y experimental.
La diferencia de presión entre los puntos 1 y 6 teóricamente debería valer cero al tener el
mismo diámetro en ambos extremos, pero experimentalmente esto no sucederá ya que la
tubería no es completamente recta, sino que posee diferencias de diámetros entre medio
de estos dos puntos. En el caso de la diferencia de presión entre los puntos 3 y 4, 3 y 5, 3
y 6, la diferencia de presión será negativa, ya que la velocidad mayor se encuentra en el
primer punto, y por ende, hay menor presión ahí. Del punto 3 al 6, la caída de presión
será mayor que del 3 al 5, y ésta, será mayor que del 3 al 4. En los resultados nos dimos
cuenta de que, efectivamente, las caídas de presión son negativas, y la del puntos 3 y 5 es
mayor que la del 3 y 4, pero la del punto 3 y 6 es menor incluso que la de los puntos 3 y
4. De igual forma, en el caso de las diferencias de presión entre los puntos 4 y 5, y 4 y 6,
deben ser negativas y la del punto 4 y 6 debe ser mayor al punto 4 y 5, teóricamente se
obtuvieron los cálculos de esta forma, pero experimentalmente ocurrió el mismo error
que en el punto 3 y 6. Además de ello, al analizar la diferencia de presión entre los puntos
5 y 6, ésta se tornó positiva. Esto nos llamó mucho la atención, pues al parecer hay algo
entre los puntos 5 y 6 que ocasiona valores erróneos en las mediciones obtenidas.
OBSERVACIONES:
Se procuró no utilizar mangueras con fuga para las válvulas de presión a fin de evitar
posibles errores en las mediciones obtenidas experimentalmente. Los valores obtenidos
difieren un poco de lo obtenido teóricamente, la principal razón es debida a pérdidas por
fricción, además de ello, el equipo a utilizar es un poco viejo, por ejemplo, originalmente
llegaba a marcar un caudal de hasta 20l/min, y ahora el máximo caudal es de
aproximadamente 18,6l/min, no sabemos si en el caso de las caídas de presión haya un
error de éste tipo también. Con las mediciones cercanas al punto 6 se obtuvieron valores
muy alejados de los esperados, posiblemente hay un factor que esté afectando de forma
prioritaria en éste punto, dejando de lado la diferencia de diámetros como factor principal
para determina la caída de presión entre ambos puntos.
12 INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química
FUENTES DE INFORMACIÓN:
Libros:
- Manual de la Mesa Para Hidrodinámica Gunt HM 112.
- Mott, Robert. (2006). Mecánica de Fluidos. Editorial Pearson Educación. Sexta
Edición. México. Págs. 165-176, 476-479.

Más contenido relacionado

PDF
Laboratorio n° 1 viscosidad
PDF
Practica 3.-ecuacion-de-bernoulli
DOCX
Mecánica de Fluidos Práctica de laboratorio número 4: Medición de Caudal
DOCX
Perdidas carga en accesorios
DOCX
Práctica VIII Ecuación de Bernoulli
DOCX
Fluidos i-viscosidad
DOCX
informe numero de reynolds
PDF
Práctica 2 Flujo Reptante (Ley de Stokes)
Laboratorio n° 1 viscosidad
Practica 3.-ecuacion-de-bernoulli
Mecánica de Fluidos Práctica de laboratorio número 4: Medición de Caudal
Perdidas carga en accesorios
Práctica VIII Ecuación de Bernoulli
Fluidos i-viscosidad
informe numero de reynolds
Práctica 2 Flujo Reptante (Ley de Stokes)

La actualidad más candente (20)

PDF
M fluidos problemas
DOCX
Viscosímetro de Saybolt
PDF
Laboratorio 1. Determinación de tipos de flujo según Reynolds
PPTX
Balance de energía con pérdidas de fricción
PPTX
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
PDF
359757087 viscosidad-cinematica-de-aire-y-agua-pdf
PDF
S07.s1 - Problemas Resueltos en Energia y Perdidas de Carga.pdf
PDF
Tablas fluidos
DOCX
Pérdida de carga en tuberías y accesorios
DOCX
Viscosidad en gases y líquidos
DOCX
Laboratorio de fuerza de presion en superficies planas
DOCX
Laboratorio 1 pérdidas en tuberías por fricción.
PPTX
Clase 3 pérdida de carga
PPTX
Estatica de fluidos opta 2011
PDF
Mecanica de-fluidos-ejercicios[1]
DOCX
Informe de Viscosidad, Mecánica de fluidos
PPTX
45 terminado-fluidos-elder
PPTX
Parámetros adimensionales
DOCX
Informe de práctica de pérdida de carga en tuberías y accesorios
M fluidos problemas
Viscosímetro de Saybolt
Laboratorio 1. Determinación de tipos de flujo según Reynolds
Balance de energía con pérdidas de fricción
cinematica de los fluidos: Ecuacion de cantidad de movimiento, continuidad y ...
359757087 viscosidad-cinematica-de-aire-y-agua-pdf
S07.s1 - Problemas Resueltos en Energia y Perdidas de Carga.pdf
Tablas fluidos
Pérdida de carga en tuberías y accesorios
Viscosidad en gases y líquidos
Laboratorio de fuerza de presion en superficies planas
Laboratorio 1 pérdidas en tuberías por fricción.
Clase 3 pérdida de carga
Estatica de fluidos opta 2011
Mecanica de-fluidos-ejercicios[1]
Informe de Viscosidad, Mecánica de fluidos
45 terminado-fluidos-elder
Parámetros adimensionales
Informe de práctica de pérdida de carga en tuberías y accesorios
Publicidad

Similar a Práctica 8 Comprobación de la Ecuación de Bernoulli (20)

PPTX
informe 3 fluidos universidad cesar vallejo
PPT
Ecuacion de bernoulli
PPTX
5.3.- MATERIAL COMPLEMENTARIO SESION 7.pptx
PPTX
Mecanica de fluidos Dinamica Bernuolli 24.pptx
PDF
Dossier aplicaciones de la ecuación de bernoulli 140821
DOCX
Lab. medida de flujo de caudal
PDF
Deduccion de Bernoulli
PDF
Informe teorema-de-bernoulli
DOCX
Ecuacion de bernoulli
DOC
Flujo turbulento, pascal y bernoulli
DOC
Flujo turbulento, pascal y bernoulli
DOCX
unidad 3 .docx
DOCX
Fluidos 4 fluidos (gradiente idraulico
PPTX
1 ANALISIS DE MASA Y ENERGÍA DE VOLÚMENES DE CONTROL [Autoguardado].pptx
PDF
Quincena9
PPTX
Principios de la Ecuacion de Bernoulli primera parte
DOCX
Aplicación del Principio de Bernoulli
PDF
S03.s1-PRESIÓN EN UN PUNTO-HIDROSTÁTICA.pdf
PDF
Tema ii-primera-ley-de-la-termodinamica
PDF
Tema ii-primera-ley-de-la-termodinamica
informe 3 fluidos universidad cesar vallejo
Ecuacion de bernoulli
5.3.- MATERIAL COMPLEMENTARIO SESION 7.pptx
Mecanica de fluidos Dinamica Bernuolli 24.pptx
Dossier aplicaciones de la ecuación de bernoulli 140821
Lab. medida de flujo de caudal
Deduccion de Bernoulli
Informe teorema-de-bernoulli
Ecuacion de bernoulli
Flujo turbulento, pascal y bernoulli
Flujo turbulento, pascal y bernoulli
unidad 3 .docx
Fluidos 4 fluidos (gradiente idraulico
1 ANALISIS DE MASA Y ENERGÍA DE VOLÚMENES DE CONTROL [Autoguardado].pptx
Quincena9
Principios de la Ecuacion de Bernoulli primera parte
Aplicación del Principio de Bernoulli
S03.s1-PRESIÓN EN UN PUNTO-HIDROSTÁTICA.pdf
Tema ii-primera-ley-de-la-termodinamica
Tema ii-primera-ley-de-la-termodinamica
Publicidad

Más de JasminSeufert (20)

PDF
Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)
PDF
Práctica 13 Estimación del Coeficiente de Convección/Película (h)
PDF
Práctica 12 Transferencia de Calor por Convección
PDF
Prácticas 10 y 11 Ley de Fourier
PDF
Práctica 9 Aplicación de la Ley de Fick
PDF
Práctica 6 Caídas de Presión en Tuberías, Accesorios y Válvulas.
PDF
Práctica 7 Caídas de Presión en Lechos Empacados
PDF
Práctica 5 Curvas Características de una Bomba
PPTX
Práctica 1 Medición de Viscosidades Resultados
PDF
Practica 4 Experimento de Reynolds
PDF
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
PDF
Práctica 1 Medición de Viscosidades
PDF
Comparaciones experimento pared
PDF
Ejercicio con funciones bessel
PDF
Investigación energía solar
PDF
Experimento Ley de Fourier
PDF
Superficies extendidas o aletas
PDF
Determinación experimental de h
PDF
Equivalente mecánico del calor
PDF
Vientos solares, una forma de convección
Práctica 14 Análisis de la Eficiencia de una Superficie Extendida (Aleta)
Práctica 13 Estimación del Coeficiente de Convección/Película (h)
Práctica 12 Transferencia de Calor por Convección
Prácticas 10 y 11 Ley de Fourier
Práctica 9 Aplicación de la Ley de Fick
Práctica 6 Caídas de Presión en Tuberías, Accesorios y Válvulas.
Práctica 7 Caídas de Presión en Lechos Empacados
Práctica 5 Curvas Características de una Bomba
Práctica 1 Medición de Viscosidades Resultados
Practica 4 Experimento de Reynolds
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Práctica 1 Medición de Viscosidades
Comparaciones experimento pared
Ejercicio con funciones bessel
Investigación energía solar
Experimento Ley de Fourier
Superficies extendidas o aletas
Determinación experimental de h
Equivalente mecánico del calor
Vientos solares, una forma de convección

Último (20)

PDF
Infraestructuras en la seguridad vial.pdf
PDF
GUIAS_TECNICAS_T1-OC DEL SEGURO SOCIAL.pdf
PDF
2. Gestión del alcance gestion de proyetos.pdf
PDF
manual-sostenibilidad-vivienda-yo-construyo (1).pdf
PDF
Evolución y sistemática microbiana agronomía
PPTX
CONCEPCIONES SOBRE LA ESTRUCTURA DE LA MATERIA.pptx
PPT
acero-estructural.ppt acero acero jjshsdkdgfh
PDF
METODOLOGÍA DE INVESTIGACION ACCIDENTES DEL TRABAJO.pdf
PDF
experto-gestion-calidad-seguridad-procesos-quimicos-industriales-gu.pdf
PPTX
Un tema del curso de Ingeniería Industrial.
PPTX
MAQUINAS DE FLUIDO - UNIDAD I.pptx
PDF
Seguridad vial en carreteras mexico 2003.pdf
PDF
alimentos de bebidas45rtrtytyurrrr 1.pdf
PDF
Presentación Ejecutiva Minimalista Azul.pdf
PPT
Sistema de muestrea de datos en operaciones
PPT
Historia de la Estadística en ingeniería civil
PPTX
Introduccion a microcontroladores PIC.pptx
PDF
Libro-Bases de la Agroecologia- altieri 1999
PPTX
GESTION DE OPERACION Y MANTENIMIENTO DE CENTRALES DE GENERACION. (1).pptx
PPTX
ETICA PROFESIONAL PARA MOTIVACION PERSONAL
Infraestructuras en la seguridad vial.pdf
GUIAS_TECNICAS_T1-OC DEL SEGURO SOCIAL.pdf
2. Gestión del alcance gestion de proyetos.pdf
manual-sostenibilidad-vivienda-yo-construyo (1).pdf
Evolución y sistemática microbiana agronomía
CONCEPCIONES SOBRE LA ESTRUCTURA DE LA MATERIA.pptx
acero-estructural.ppt acero acero jjshsdkdgfh
METODOLOGÍA DE INVESTIGACION ACCIDENTES DEL TRABAJO.pdf
experto-gestion-calidad-seguridad-procesos-quimicos-industriales-gu.pdf
Un tema del curso de Ingeniería Industrial.
MAQUINAS DE FLUIDO - UNIDAD I.pptx
Seguridad vial en carreteras mexico 2003.pdf
alimentos de bebidas45rtrtytyurrrr 1.pdf
Presentación Ejecutiva Minimalista Azul.pdf
Sistema de muestrea de datos en operaciones
Historia de la Estadística en ingeniería civil
Introduccion a microcontroladores PIC.pptx
Libro-Bases de la Agroecologia- altieri 1999
GESTION DE OPERACION Y MANTENIMIENTO DE CENTRALES DE GENERACION. (1).pptx
ETICA PROFESIONAL PARA MOTIVACION PERSONAL

Práctica 8 Comprobación de la Ecuación de Bernoulli

  • 1. 1INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química PRÁCTICA #8 “Comprobación de la Ecuación de Bernoulli” OBJETIVO GENERAL: Comprobar experimentalmente la forma en que varía la presión con respecto a diferentes diámetros en la aplicación de la ecuación de Bernoulli. Objetivos Específicos: - Utilizar la mesa para hidrodinámica para medir las variaciones de presión en un tubo de Venturi. - Modificar el caudal del fluido para observar la variación de la presión con respecto a la velocidad. - Comparar los resultados obtenidos experimentalmente con los calculados teóricamente. - Capturar evidencia visual del experimento. MARCO TEÓRICO:  Ecuación de Bernoulli. El análisis de un problema de tubería toma en cuenta toda la energía dentro del sistema. En física aprendimos que la energía no se crea ni se destruye, sólo de transforma de una forma en otra. Éste es el enunciado de la ley de conservación de la energía. Hay tres formas de energía que se toman siempre en consideración cuando se analiza un problema de flujo en tuberías. Considere un elemento de fluido como el que ilustramos en la figura 1, dentro de una tubería en un sistema de flujo. Se localiza a cierta elevación z, tiene velocidad v y presión p. El elemento de fluido posee las formas de energía siguientes: 1. Energía potencial. Debido a su elevación, la energía potencial del elemento en relación con algún nivel de referencia es: 𝐸𝑃 = 𝑤𝑧 donde w es el peso del elemento. 2. Energía cinética. Debido a su velocidad, la energía cinética del elemento es: 𝐸𝐶 = 𝑤𝑣2 2𝑔⁄ 3. Energía de flujo. A veces llamada energía de presión o trabajo de flujo, y representa la cantidad de trabajo necesario para mover el elemento de fluido a través de cierta sección contra la presión p. La energía de flujo se abrevia EF y se calcula por medio de: 𝐸𝐹 = 𝑤𝑝 𝛾⁄ Ésta ecuación se obtiene como sigue. La figura 2 muestra al elemento de fluido en la tubería mientras se mueve a través de una sección. La fuerza sobre el elemento es pA, donde p es la presión en la sección y A es el área de ésta. Al mover el elemento a través de la sección, la fuerza recorre una distancia L igual a la longitud del elemento. Por tanto, el trabajo que se realiza es: 𝑇𝑟𝑎𝑏𝑎𝑗𝑜 = 𝑝𝐴𝐿 = 𝑝𝑉 Figura 1 Elemento de fluido en una tubería. Figura 2 Energía de fluido.
  • 2. 2 INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química donde V es el volumen del elemento. El peso del elemento w es: 𝑤 = 𝛾𝑉 donde 𝛾 es el peso específico del fluido. Entonces, el volumen del elemento es: 𝑉 = 𝑤 𝛾⁄ y obtenemos: 𝑇𝑟𝑎𝑏𝑎𝑗𝑜 = 𝑝𝑉 = 𝑝𝑤 𝛾⁄ denominada energía de flujo, y se representa con la ecuación: 𝐸𝐹 = 𝑤𝑝 𝛾⁄ Entonces, la cantidad total de energía de estas tres formas que posee el elemento de fluido es la suma E: 𝐸 = 𝐸𝐹 + 𝐸𝑃 + 𝐸𝐶 𝐸 = 𝑤𝑝 𝛾⁄ + 𝑤𝑧 + 𝑤𝑣2 2𝑔⁄ Cada uno de estos términos se expresa en unidades de energía como el Newton-metro (N∙m) en el SI, y el pie-libra (pie∙lb) en el Sistema Tradicional de Estados Unidos. Figura 3 Elementos de fluido utilizados en la ecuación de Bernoulli. Ahora, considere el elemento de fluido en la figura 3, que se mueve de la sección 1 a la 2. Los valores de p, z y v son diferentes en las dos secciones. En la sección 1, la energía total es: 𝐸1 = 𝑤𝑝1 𝛾 + 𝑤𝑧1 + 𝑤𝑣1 2 2𝑔 En la sección 2, la energía total es: 𝐸2 = 𝑤𝑝2 𝛾 + 𝑤𝑧2 + 𝑤𝑣2 2 2𝑔 Si no hay energía que se agregue o pierda en el fluido entre las secciones 1 y 2, entonces el principio de conservación de la energía requiere que: 𝐸1 = 𝐸2 𝑤𝑝1 𝛾 + 𝑤𝑧1 + 𝑤𝑣1 2 2𝑔 = 𝑤𝑝2 𝛾 + 𝑤𝑧2 + 𝑤𝑣2 2 2𝑔 El peso del elemento w es común a todos los términos y se elimina al dividir entre él. Así, la ecuación se convierte en: 𝑝1 𝛾 + 𝑧1 + 𝑣1 2 2𝑔 = 𝑝2 𝛾 + 𝑧2 + 𝑣2 2 2𝑔 Conocida como ecuación de Bernoulli. Cada término de la ecuación de Bernoulli resulta de dividir una expresión de la energía entre el peso de un elemento del fluido. Por lo anterior: Cada término de la ecuación de
  • 3. 3INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química Bernoulli es una forma de la energía que posee el fluido por unidad de peso del fluido que se mueve en el sistema. La unidad de cada término es energía por unidad de peso. En el sistema SI las unidades son N∙m/N, y en el Sistema Tradicional de Estados Unidos son lb∙pie/lb. Sin embargo, observe que la unidad de fuerza (o peso) aparece tanto en el numerador como en el denominador, y por ello puede cancelarse. La unidad resultante es tan solo el metro (m) o el pie, y se interpreta como una altura. En el análisis del flujo de fluidos los términos se expresan por lo común como altura, en alusión a la altura sobre un nivel de referencia. En específico: 𝑝 𝛾⁄ es la carga de presión. 𝑧 es la carga de elevación. 𝑣2 2𝑔⁄ es la carga de velocidad. A la suma de estos tres términos se le denomina carga total. Figura 4 Carga de presión, carga de elevación, carga de velocidad y carga total. Debido a que cada término de la ecuación de Bernoulli representa una altura, un diagrama similar al que se muestra en la figura 4 ayuda a visualizar la relación entre los tres tipos de energía. Conforme el fluido se mueve del punto 1 al 2, la magnitud de cada término puede cambiar su valor. Sin embargo, si el fluido no pierde o gana energía, la carga total permanece a un nivel constante. La ecuación de Bernoulli se utiliza para determinar valores de carga de presión, carga de elevación y cambio de la carga de velocidad, conforme el fluido circula a través del sistema. En la figura 4 observamos que la carga de velocidad en la sección 2 será menor que la sección 1. Esto se demuestra por medio de la ecuación de continuidad. 𝐴1 𝑣1 = 𝐴2 𝑣2 𝑣2 = 𝑣1(𝐴1 𝐴2⁄ ) Debido a que 𝐴1 < 𝐴2, 𝑣2 debe ser menor que 𝑣1. Y como la velocidad está elevada al cuadrado en el término de la carga de velocidad, 𝑣2 2 2𝑔⁄ es mucho menor que 𝑣1 2 2𝑔⁄ .
  • 4. 4 INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química Es común que cuando crece el tamaño de la sección, como ocurre en la figura 4, la carga de presión se incremente porque la carga de velocidad disminuye. Éste es el modo en que se construyó la figura 4. Sin embargo, el cambio real también se ve afectado por el cambio en la carga de elevación. En resumen: La ecuación de Bernoulli toma en cuenta los cambios en la carga de elevación, carga de presión y carga de velocidad entre dos puntos en un sistema de flujo de fluido. Se supone que no hay pérdidas o adiciones de energía entre los dos puntos, por lo que la carga total permanece constante. Al escribir la ecuación de Bernoulli, es esencial que las presiones en los dos puntos de referencia se expresen ambas como presiones absolutas o ambas como presiones manométricas. Es decir, las dos deben tener la misma presión de referencia. En la mayoría de los problemas será conveniente utilizar la presión manométrica, debido a que algunas partes del sistema de fluido expuestas a la atmósfera tendrán una presión manométrica igual a cero. Asimismo, la mayoría de las presiones se les mide por medio de un medidor con respecto a la presión atmosférica local.  Restricciones de la ecuación de Bernoulli. Aunque la ecuación de Bernoulli es aplicable a bastantes problemas prácticos, hay limitaciones que debemos conocer, a fin de aplicarla con propiedad. 1. Es válida sólo para fluidos incompresibles, porque se supone que el peso específico del fluido es el mismo en las dos secciones de interés. 2. No puede haber dispositivos mecánicos que agreguen o retiren energía del sistema entre las dos secciones de interés, debido a que la ecuación establece que la energía en el fluido es constante. 3. No puede haber transferencia de calor hacia el fluido o fuera de éste. 4. No puede haber pérdida de energía debido a la fricción. En realidad ningún sistema satisface todas esas restricciones. Sin embargo, hay muchos sistemas donde se utiliza la ecuación de Bernoulli, y sólo se generan errores mínimos. Asimismo, el empleo de esta ecuación permite hacer una estimación rápida del resultado, cuando esto es todo lo que se desea.  Tanques, depósitos y toberas expuestos a la atmósfera. Figura 5 Sifón de un problema. La figura 5 muestra un sistema de fluido donde un sifón saca líquido desde un tanque o depósito y lo expulsa a través de una tobera al final de la tubería. Observe que la superficie del tanque (punto A) y la corriente libre de fluido que sale de la tobera (sección F) no están confinadas por fronteras sólidas, sino que están expuestas a la atmósfera. Por tanto,
  • 5. 5INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química la presión manométrica en dichas secciones es igual a cero. Por ello, observamos la regla siguiente: Cuando el fluido en un punto de referencia está expuesto a la atmósfera, la presión es igual a cero y el término de carga de presión se cancela en la ecuación de Bernoulli. Puede suponerse que el tanque, de donde se toma el fluido, es muy grande en comparación con el tamaño del área de flujo dentro de la tubería. Ahora, como 𝑣 = 𝑄 𝐴⁄ , la velocidad en la superficie de dicho tanque será muy pequeña. Además, cuando se utiliza la velocidad para calcular la carga de velocidad, 𝑣2 2𝑔⁄ , la velocidad se eleva al cuadrado. El proceso se elevar al cuadrado un número pequeño mucho menor que 1.0 produce otro número aún más pequeño. Por estas razones adoptamos la regla siguiente: A la carga de velocidad en la superficie de un tanque o depósito se le considera igual a cero, y se cancela en la ecuación de Bernoulli.  Ambos puntos de referencia están en la misma tubería. Asimismo, observe en la figura 5 que varios puntos de interés (puntos B-E) se encuentran dentro de la tubería, cuya área de flujo es uniforme. En las condiciones de flujo estable supuestas en estos problemas, la velocidad será la misma en todo el tubo. Entonces, cuando existe flujo estable se aplica la regla siguiente: Cuando los dos puntos de referencia para la ecuación de Bernoulli están dentro de una tubería del mismo tamaño, los términos de carga de velocidad en ambos lados de la ecuación son iguales y se cancelan.  Las elevaciones de ambos puntos se referencia son iguales. De manera similar, se aplica la regla siguiente cuando los puntos de referencia están al mismo nivel: Cuando los dos puntos de referencia para la ecuación de Bernoulli están a la misma elevación, los términos de carga de elevación 𝑧1 y 𝑧2 son iguales y se cancelan. Las cuatro observaciones anteriores permiten la simplificación de la ecuación de Bernoulli y facilitan las manipulaciones algebraicas.  Medidores Venturi. En la figura 7 se muestra el aspecto básico del tubo Venturi. El flujo que viene de la tubería principal en la sección 1 se hace acelerar a través de una sección estrecha denominada garganta, donde la presión del fluido disminuye. Después, el flujo se expande a través de una porción divergente que alcanza el mismo diámetro de la tubería principal. Se coloca tomas de presión en la pared del tubo de la sección 1 y en la pared de la garganta, a la que llamaremos sección 2. Estas tomas de presión se conectan a ambos lados de un manómetro diferencial, de modo que la deflexión h sea una indicación de la diferencia de presión 𝑝1 − 𝑝2. Por supuesto, es posible utilizar otros medidores de presión diferencial. Se emplea la ecuación de la energía y la de continuidad para obtener la relación con que se calcula el flujo volumétrico. Con el empleo de las secciones 1 y 2 como puntos de referencia en la figura 7, se escribe las ecuaciones siguientes: 𝑝1 𝛾 + 𝑧1 + 𝑣1 2 2𝑔 − ℎ 𝐿 = 𝑝2 𝛾 + 𝑧2 + 𝑣2 2 2𝑔 𝑄 = 𝐴1 𝑣1 = 𝐴2 𝑣2
  • 6. 6 INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química Estas ecuaciones sólo son válidas para fluidos incompresibles, es decir, líquidos. En el flujo de gases se debe observar con atención especial cómo varía el peso específico, 𝛾, con el cambio de la presión. La simplificación algebraica de las ecuaciones anteriores es: 𝑣2 2 − 𝑣1 2 2𝑔 = 𝑝1 − 𝑝2 𝛾 + (𝑧1 − 𝑧2) − ℎ 𝐿 𝑣2 2 − 𝑣1 2 = 2𝑔[(𝑝1 − 𝑝2) 𝛾⁄ + (𝑧1 − 𝑧2) − ℎ 𝐿] Pero 𝑣2 2 = 𝑣1 2(𝐴1 𝐴2⁄ )2 . Entonces, tenemos: 𝑣1 2[(𝐴1 𝐴2⁄ )2 − 1] = 2𝑔[(𝑝1 − 𝑝2) 𝛾⁄ + (𝑧1 − 𝑧2) − ℎ 𝐿] 𝑣1 = √ 2𝑔[(𝑝1 − 𝑝2) 𝛾⁄ + (𝑧1 − 𝑧2) − ℎ 𝐿] (𝐴1 𝐴2⁄ )2 − 1 En este momento podemos hacer dos simplificaciones. En primer lugar, es común que el tubo Venturi se instale en posición horizontal, por lo que la diferencia de elevación 𝑧1 − 𝑧2 es igual a cero. En segundo lugar, el término ℎ 𝐿 es la pérdida de energía del fluido conforme pasa de la sección 1 a la 2. El valor de ℎ 𝐿 debe determinarse de forma experimental. Pero es más conveniente modificar la ecuación anterior eliminando ℎ 𝐿 e introduciendo un coeficiente de descarga C: 𝑣1 = 𝐶√ 2𝑔 (𝑝1 − 𝑝2) 𝛾⁄ (𝐴1 𝐴2⁄ )2 − 1 La ecuación anterior se emplea para obtener la velocidad de flujo en la garganta del instrumento. Observe que la velocidad depende de la diferencia en la carga de presión entre los puntos 1 y 2. Por esa razón estos medidores reciben el nombre de medidores de carga variable. Lo normal es que se desee calcular el flujo volumétrico. Como 𝑄 = 𝐴1 𝑣1, tenemos: Figura 6 Tubo Venturi.
  • 7. 7INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química 𝑄 = 𝐶𝐴1√ 2𝑔 (𝑝1 − 𝑝2) 𝛾⁄ (𝐴1 𝐴2⁄ )2 − 1 El coeficiente de descarga C representa la relación de la velocidad real de energía a través del tubo Venturi, a la velocidad ideal para un Venturi sin ninguna pérdida de energía. Por tanto, el valor de C siempre será menor que 1.0. El Venturi de tipo Herschel, está diseñado para minimizar las pérdidas de energía con el empleo de una contracción lisa y gradual en la garganta, y una expansión lisa y gradual después de ésta. Por ello, es común que el coeficiente de descarga esté cerca de 1.0. La figura 7 indica que el valor real de C depende del número de Reynolds para el flujo en la tubería principal. Para números de Reynolds arriba de 2x105 , se toma el valor de C igual a 0.984. Este valor se aplica al Venturi tipo Herschel, que se fabrica como fundición rugosa con diámetro de tubería que varía en un rango muy amplio, pero la relación d/D, llamada relación beta, o β, debe estar entre 0.30 y 0.75. Para números de Reynolds por debajo de 2x105 , el valor de C debe leerse en la figura 7. Es común que los medidores Venturi más pequeños, para diámetros de tubo en el rango de 2 a 10 pulgadas (50 a 250mm), se manufacturen en máquinas, con lo que resulta una superficie con mejor acabado que la que se obtiene con fundición. Para este tipo, el valor de C se toma como 0.995, si 𝑁 𝑅 > 2𝑥105 . Para los Venturi hechos en máquina no se dispone de datos de C para números de Reynolds más bajos. Figura 7 Coeficiente de descarga para un tubo venturi fundido y rugoso de tipo Herschel. MATERIALES: - Agua. - Mesa para Hidrodinámica Gunt HM 112. - Tubo Venturi. - 6 mangueras para presión. PROCEDIMIENTO: 1. Limpiar la mesa para hidrodinámica. 2. Conectar la mesa a la corriente. 3. Instalar el tubo Venturi en la línea principal.
  • 8. 8 INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química 4. Conectar mangueras para presión. 5. Realizar purga para todas las mangueras de presión en la línea principal. 6. Abrir la válvula al máximo caudal. 7. Operar la línea y registrar la primer lectura de diferencia de presión. 8. Cerrar la válvula aproximadamente 2lts/min 5 veces y tomar lecturas de la caída de presión. 9. Modificar los puntos de presión a medir, modificar el caudal y tomar lecturas. 10. Repetir estos pasos para todas las combinaciones de puntos de presión que se deseen realizar. 11. Comparar los resultados obtenidos teórica y experimentalmente. 12. Limpiar el área de trabajo. Figura 8 Tubo de Venturi. Figura 9 Colocando el Tubo Venturi. Figura 10 Válvulas de Presión. Figura 11 Mangueras conectadas. Figura 12 Cerrando el circuito. Figura 13 Purgando.
  • 9. 9INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química Figura 14 Modificando el caudal. Figura 15 Abriendo válvulas. Figura 16 Anotando datos obtenidos. Figura 17 Modificando puntos a medir. Figura 18 Abriendo válvulas. Figura 19 Modificando puntos a medir. CÁLCULOS Y RESULTADOS: Se obtuvo la diferencia de presión entre los dos puntos a medir en cada caso utilizando la ecuación de Bernoulli y con los cálculos se construyó la tabla siguiente: Medición Intento Diám. 1 (m) Diám. 2 (m) Q (L/min) Dif. Presión TEÓRICA (kPa) Dif. Presión EXPERIMENTO (kPa) P1 - P3 1 0,0284 0,014 18,6 1,902 2,300 2 0,0284 0,014 16,6 1,515 1,800 3 0,0284 0,014 14,7 1,188 1,360 4 0,0284 0,014 12,6 0,873 0,920 5 0,0284 0,014 10,6 0,618 0,565
  • 10. 10 INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química P1 - P2 1 0,0284 0,0225 18,5 0,182 1,150 2 0,0284 0,0225 16,5 0,145 0,810 3 0,0284 0,0225 14,5 0,112 0,495 4 0,0284 0,0225 12,6 0,084 0,235 5 0,0284 0,0225 10,6 0,060 0,000 P1 - P4 1 0,0284 0,0172 18,4 0,751 0,820 2 0,0284 0,0172 16,4 0,597 0,620 3 0,0284 0,0172 14,5 0,467 0,455 4 0,0284 0,0172 12,4 0,341 0,250 5 0,0284 0,0172 10,4 0,240 0,065 P1 - P6 1 0,0284 0,0284 18,4 0,000 1,370 2 0,0284 0,0284 16,5 0,000 1,087 3 0,0284 0,0284 14,4 0,000 0,735 4 0,0284 0,0284 12,5 0,000 0,455 5 0,0284 0,0284 10,4 0,000 0,245 P3 - P4 1 0,014 0,0172 18,4 -1,110 -1,705 2 0,014 0,0172 16,5 -0,893 -1,515 3 0,014 0,0172 14,4 -0,680 -1,315 4 0,014 0,0172 12,5 -0,512 -1,130 5 0,014 0,0172 10,5 -0,361 -0,955 P3 - P5 1 0,014 0,0242 18,4 -1,757 -2,205 2 0,014 0,0242 16,4 -1,396 -1,885 3 0,014 0,0242 14,5 -1,091 -1,605 4 0,014 0,0242 12,5 -0,811 -1,315 5 0,014 0,0242 10,4 -0,561 -1,080 P3 - P6 1 0,014 0,0284 18,4 -1,861 -1,255 2 0,014 0,0284 16,3 -1,461 -1,045 3 0,014 0,0284 14,3 -1,124 -0,920 4 0,014 0,0284 12,4 -0,845 -0,830 5 0,014 0,0284 10,5 -0,606 -0,770 P4-P5 1 0,0172 0,0242 18,4 -0,647 -1,005 2 0,0172 0,0242 16,3 -0,508 -0,905 3 0,0172 0,0242 14,3 -0,391 -0,805 4 0,0172 0,0242 12,4 -0,294 -0,720 5 0,0172 0,0242 10,4 -0,207 -0,685 P4-P6 1 0,0172 0,0284 18,4 -0,751 -0,005 2 0,0172 0,0284 16,2 -0,583 -0,085 3 0,0172 0,0284 14,5 -0,467 -0,155 4 0,0172 0,0284 12,3 -0,336 -0,235 5 0,0172 0,0284 10,4 -0,240 -0,305 P5-P6 1 0,0242 0,0284 18,3 -0,104 1,510 2 0,0242 0,0284 16,5 -0,084 1,213 3 0,0242 0,0284 14,1 -0,062 0,830 4 0,0242 0,0284 12,3 -0,047 0,580 5 0,0242 0,0284 10,4 -0,033 0,335
  • 11. 11INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química Donde los puntos a medir, estuvieron distribuidos de ésta forma: ANÁLISIS: Con los resultados obtenidos nos pudimos dar cuenta de que, la diferencia de presión entre los puntos 1 y 3 será positiva, ya que la velocidad es menor en el primer punto que en el segundo y se necesitaría mayor presión para que el fluido fluya por ahí; y será mayor que la diferencia de presión entre los puntos 1 y 2, ya que la diferencia de diámetros, y por ende, de velocidades, es mayor. Esto se comprobó de forma teórica y experimental. La diferencia de presión entre los puntos 1 y 6 teóricamente debería valer cero al tener el mismo diámetro en ambos extremos, pero experimentalmente esto no sucederá ya que la tubería no es completamente recta, sino que posee diferencias de diámetros entre medio de estos dos puntos. En el caso de la diferencia de presión entre los puntos 3 y 4, 3 y 5, 3 y 6, la diferencia de presión será negativa, ya que la velocidad mayor se encuentra en el primer punto, y por ende, hay menor presión ahí. Del punto 3 al 6, la caída de presión será mayor que del 3 al 5, y ésta, será mayor que del 3 al 4. En los resultados nos dimos cuenta de que, efectivamente, las caídas de presión son negativas, y la del puntos 3 y 5 es mayor que la del 3 y 4, pero la del punto 3 y 6 es menor incluso que la de los puntos 3 y 4. De igual forma, en el caso de las diferencias de presión entre los puntos 4 y 5, y 4 y 6, deben ser negativas y la del punto 4 y 6 debe ser mayor al punto 4 y 5, teóricamente se obtuvieron los cálculos de esta forma, pero experimentalmente ocurrió el mismo error que en el punto 3 y 6. Además de ello, al analizar la diferencia de presión entre los puntos 5 y 6, ésta se tornó positiva. Esto nos llamó mucho la atención, pues al parecer hay algo entre los puntos 5 y 6 que ocasiona valores erróneos en las mediciones obtenidas. OBSERVACIONES: Se procuró no utilizar mangueras con fuga para las válvulas de presión a fin de evitar posibles errores en las mediciones obtenidas experimentalmente. Los valores obtenidos difieren un poco de lo obtenido teóricamente, la principal razón es debida a pérdidas por fricción, además de ello, el equipo a utilizar es un poco viejo, por ejemplo, originalmente llegaba a marcar un caudal de hasta 20l/min, y ahora el máximo caudal es de aproximadamente 18,6l/min, no sabemos si en el caso de las caídas de presión haya un error de éste tipo también. Con las mediciones cercanas al punto 6 se obtuvieron valores muy alejados de los esperados, posiblemente hay un factor que esté afectando de forma prioritaria en éste punto, dejando de lado la diferencia de diámetros como factor principal para determina la caída de presión entre ambos puntos.
  • 12. 12 INSTITUTO TECNOLÓGICO DE MEXICALI, Equipo Rojo, Ing. Química FUENTES DE INFORMACIÓN: Libros: - Manual de la Mesa Para Hidrodinámica Gunt HM 112. - Mott, Robert. (2006). Mecánica de Fluidos. Editorial Pearson Educación. Sexta Edición. México. Págs. 165-176, 476-479.