Reforzamiento – Pre – Matemática – 2017
Lic. Luis Cañedo Cortez Página 1
TRIGONOMÉTRIA
Sistema de medición angular
Ángulo trigonométrico
Es la figura que se
genera por la
rotación de un rayo
alrededor de un
punto fijo llamado
vértice desde una
posición inicial (lado
inicial) hasta una
posición final (lado
final).
Elementos.
 O → vértice
 OA → lado inicial
 OB ∧ OC → lado final
 α ángulo trigonométrico positivo (rotación
antihoraria).
 θ ángulo trigonométrico negativo (rotación
horaria).
Sistema sexagesimal (Inglés)
NOTACIÓN EQUIVALENCIA
Un grado sexagesimal: 1°
Un minuto sexagesimal: 1’
Un segundo sexagesimal: 1’’
1° = 60’
1’ = 60’’
m 1v = 360°
Sistema centesimal (francés)
NOTACIÓN EQUIVALENCIA
Un grado centesimal: 1
g
Un minuto centesimal: 1
m
Un segundo centesimal: 1
s
1
g
= 100
m
1
m
= 100
s
m 1v = 400g
Sistema radial (circular)
En este sistema la unidad se denomina RADIÁN que se
define como la medida del ángulo central que subtiende
un arco en una circunferencia con longitud igual al radio.
Equivalencias de conversión
m
1
2
V = 180° = 200
g
=  rad
9° = 10
g
RELACIÓN DE LOS TRES SISTEMAS DE MEDIDAS
ANGULARES
Sean S, C y R los números que representan la medida de
un ángulo en los sistemas sexagesimal, centesimal y
radial respectivamente. Se tiene:
𝑆
180
=
𝐶
200
=
𝑅
𝜋
S 180k
S C R
k C 200k
180 200
R k


    
   
S 9k
S C R
k C 10k
9 10
20 R k
20

 

      
 

Actividad.
1. Del gráfico, hallar: "x".
a) 24° b) 27° c) 30° d) 32° e) 36°
2. Del gráfico, hallar: xº
a) 9
b) 12
c) 15
d) 16
e) 20
3. Del gráfico, calcular "x".
A. 3
B. 7
C. 5
D. 9
4. Del gráfico, hallar "x", si: L1//L2.
a) α - β d) α - β +180º
b) α+β +180º e) α+β +360º
c) α - β +360º
5. Sabiendo que: rad a0 3b'1c"
17

  ; calcular:
a c 1
K
b
 

A. 5/2 B. 3/4 C. 5/3 D. 2
Reforzamiento – Pre – Matemática – 2017
Lic. Luis Cañedo Cortez Página 2
6. Del gráfico, calcular "x".
A. 3
B. 7
C. 5
D. 9
7. Señale el valor de: θ =
𝜋
9
rad + 60g en el sistema
sexagesimal.
A. 64° B. 76° C. 69° D. 74°
8. Calcular:
g25 50 rad
3E
g64 40 rad
6

 


 
a) 1 b) 2 c) 3 d) 4 e) 5
9. Hallar: "x" si se cumple:
a) 12 b) 17 c) 24 d) 20 e) 10
10. Sabiendo que: rad a 5b'5c''
37

  ; calcular:
a c
b

. a) 2 b) 3 c) 4 d) 6 e) 8
11. En un triángulo, dos de sus ángulos interiores
miden 7
rad
108
 y 144
g
. ¿Cuál es la medida
sexagesimal del tercer ángulo?
a) 28°32' b) 38°34' c) 48°22' d) 28°42' e) 38°44'
12. Calcular:
g m
3
40 1
K
1' 10"
 
a) 1,24 b) 2,16 c) 2,24 d) 2,4
13. Al reducir la expresión se obtiene:
  2
2
2C S 2C S
P
400R
  

a) 319 b) 309 c) 303 d) 296 e) 285
14. Siendo S, C y R lo convencional, simplificar:
a) 11,5 b) 13,5 c) 15,5 d) 27,5 e) 20
15. Calcular:
s m
3
40 1
K
1' 10"
 
A. 1,24 C. 2,16 B. 2,24 D. 2,4
16. Siendo S y C lo convencional, hallar un ángulo en
radianes, si:
S = n + 1
C = n + 2
a) /5 b) /10 c) /15 d) /20 e) /25
GEOMETRÍA
SEGMENTO DE RECTA
Porción determinada de recta.
Notación: Segmento “AB” : AB
PUNTO MEDIO DE UN SEGMENTO
Es el punto que pertenece al segmento y equidista de los
extremos.
Postulado: La menor distancia entre dos puntos es la
longitud del segmento de recta que los une.
OPERACIONES CON SEGMENTOS
Adición
Sustracción
Actividad.
1. Sobre una recta se ubican los puntos consecutivos
"P", "Q", "R" y "S". Calcule "QR", si: PS=30, PR=20
y QS=22.
2. Sobre una recta se ubican los puntos consecutivos
"A", "B", "C" y "D", tal que:
Calcule la longitud del segmento que une los puntos
medios de los segmentos AB y CD
Reforzamiento – Pre – Matemática – 2017
Lic. Luis Cañedo Cortez Página 3
3. Se tienen los puntos colineales “A”, “B”, “C” y “D”
de tal manera que: AB = 3BC y AD + 3CD = 12,
hallar “BD”.
A. 1,5 B. 3 C. 4 D. 6
4. Se tienen los puntos consecutivos “A”, “B”, “C” y
“D” de tal manera que: AC + 2DC + BD = 40 y AB =
DC, calcular “AD”.
A. 10 B. 15 C. 18 D. 20
5. Los puntos consecutivos "A", "M", "B" y "C"
pertenecen a la misma recta. "M" es el punto medio
de AC. Hallar MB, si: AB - BC = 32 cm.
A. 8 cm B. 32 C. 18 D. 16
6. Se tiene los puntos consecutivos A, B y C. Si:
2AB = 3BC ; AC = 20. Hallar “AB”
a) 4 b) 8 c) 12 d) 15 e) 16
7. Se tiene los puntos consecutivos A, B, C y D. Si:
AC = 12 ; BD = 18 ; AD = 23. Hallar BC.
a) 4 b) 5 c) 6 d) 7 e) 9
8. Se tiene los puntos consecutivos P, Q, R y S. Si:
PR = 19cm ; QS = 24cm ; PS = 30cm. Hallar “QR”.
a) 7cm b) 16cm c) 15cm d) 11cm e) 13cm
9. Se tiene los puntos consecutivos P, Q, R y S. Si:
PQ = 2QR ; RS = 4.QR ; PS = 28. Hallar QR
a) 5 b) 3 c) 6 d) 2 e) 4
10. Se tiene los puntos consecutivos P, Q y R. Si:
PQ QR
2 3
 ; PR = 25. Hallar PQ
a) 8 b) 10 c) 5 d) 4 e) 15
11. Se ubican en una recta las puntos consecutivos A,
B, C y D, de modo que:
AB =
2
x
5
 , BC=
x
5
– 3, CD =
7
5
, AD = 24cm.
Calcular el valor de x.
a) 6cm b) 12cm c) 21cm d) 15cm e) 14cm
12. Sean los puntos colineales: "O", "A", "B" y "C" tal
que: 3AB=BC. Hallar:
3OA OC
4OB

a) 0,5 b) 1,5 c) 2 d) 3 e) 1
13. Sobre una recta se ubican los puntos consecutivos
"A", "B", "C" y "D". Si se cumple:
AB BC CD
2 3 5
  . Calcular "CD", si: AD = 20
a) 6 b) 9 c) 12 d) 8 e) 10
ARITMÉTICA
TEORÍA DE CONJUNTOS
Noción de conjunto
Es una colección o agrupación de objetos bien definidos,
llamados elementos, los cuales pueden ser concretos o
abstractos.
Ejemplo:
Vocal de la palabra “murciélago”.
Número primo menor que 10.
País sudamericano que ha ganado un campeonato
mundial de fútbol.
Los conjuntos se nombran con letras mayúsculas: A, B, C,
..., etc. Y para denotar a sus elementos se usan las letras
minúsculas, a menos que dichos elementos sean, a su
vez, conjuntos. Dichos elementos van separados con
comas (,) o punto y coma (;) o bien indicando una
propiedad común de ellos.
Notación:
A = { a; e; i; o; u]
B = { 2; 3; 5; 7}
La notación gráfica consiste en representar los elementos
dentro de una figura cerrada (diagrama de Venn-Euler).
Conjuntos numéricos.
 Números naturales ( )
 0;1;2;3;....
 Números enteros ( )
 ...; 3; 2; 1;0;1;2;3;...   
 Números racionales ( )
Son aquellos números que resultan de dividir dos
números enteros, excepto de dividirlos por cero.
1 1 1 1 2
...; 1; ; ;0; ; ; ;1;...
2 3 5 4 3
 
    
 
 Números irracionales(I )
Son aquellos números no racionales cuya cantidad
de cifras decimales es indeterminada.
 ...; 5; 2; ; ;...I e  
 Números reales ( )
Son aquellos números que provienen de la reunión
de los números racionales e irracionales.
Relación de pertenencia
Si x es un elemento del conjunto A, se dice que "x
pertenece al conjunto A" y se denota: x ϵ A
En el caso de no pertenecer x al conjunto A se denota: x
 A.
Ejercicio.
Colocar el valor de verdad a cada proposición si:
A
.a
.e
.i
.o
.u
Reforzamiento – Pre – Matemática – 2017
Lic. Luis Cañedo Cortez Página 4
A = {8; 3; {2}; {1, 3}}
 3  A ( )  8  A ( )
 2  A ( )  3  {1, 3} ( )
 {3}  A ( )  4  A ( )
Determinación de un conjunto
Por extensión
Cuando se enuncia uno a uno los elementos de un
conjunto de manera explícita.
Ejemplo: R = {1; 3; 5; 7}
Por comprensión
Cuando se indica una característica particular y común a
todos sus elementos.
Ejemplo:  2 1/ 4R x x x    
Cardinal de un conjunto
Indica la cantidad de elementos diferentes de un
conjunto dado.
Notación:
n(A) se lee: cardinal de A.
Ejemplo: A = {1; 2; 5; 6; 5} → n(A) = 4
Clases de conjuntos
Conjunto finito
Es aquel conjunto que tiene una cantidad limitada de
elementos, por lo tanto el proceso de conteo de sus
elementos termina en algún momento.
Ejemplo: R = {x/x es un número natural menor que 100}
Conjunto infinito
Es aquel conjunto que posee una cantidad ilimitada de
elementos, por lo tanto el proceso e conteo de sus
elementos no termina.
Ejemplo: R = {x/x es un número natural impar}
Conjunto vacío o nulo
Es aquel que carece de elementos.
Notación:  ; { }
Ejemplo: A = {xϵ / 0 < x < 5  x
2
= 100} = { } = 
Conjunto unitario
Es aquel conjunto que tiene un solo elemento.
También llamado singleton.
Ejemplo: P = {x/x ϵ ; x 0  x > 0} = {0}
Conjunto universal
Es el conjunto que contiene a todos los elementos
considerados en un contexto determinado. No existe un
conjunto universal absoluto y se le denota generalmente
por U.
Ejemplo: A = {2x + 3 / x ϵ Z / 0 < x < 4}
Un conjunto universal para A sería:
U = {1; 3; 5; 7; 9; 11}
Actividad.
1. Sabiendo que el conjunto:
A = {a + b; a + 2b – 2; 10}
es un conjunto unitario. Dar el valor de “a2
+ b2
”.
a) 16 b) 80 c) 68 d) 58 e) 52
2. Dado el conjunto A = {5; {7}; 9; 12}. Indicar (V) o
(F), según corresponda:
i) {7}  A ( ) iv) {9}  A ( )
ii) 9  A ( ) v)   A ( )
iii) 7  A ( ) vi) 10  A ( )
a) VFVFVF b) VFFVVF c) VVVFFF d) VVFFFV
3. Dado el conjunto M = {a, {b}, {m}, p}. ¿Cuántas
proposiciones son falsas?
i) {b}  M iv) {{b}, p}  M
ii) b  M v) {{b}, {m}}  M
iii) {{m}}  M vi) m  M
a) 1 b) 2 c) 3 d) 4 e) 5
4. Sabiendo que los conjuntos:
A = {4a + 3b; 23} y B = {3a + 7b; 41} son
unitarios. Hallar: “a + b”
a) 2 b) 4 c) 5 d) 7 e) 9
5. Sea:
2
1
/ 7 9
2
x
M x x
 
       
 
Indicar la suma de los elementos de M.
a) 170 b) 85 c) 165 d) 129
6. Se tienen los conjuntos unitarios:
M = {a2
+ 1; 2a} y N = {3x + y; x - y + 12}
Halla: a + x + y
a) 7 b) 9 c) 6 d) 8 e) 10
7. Determine por extensión el siguiente conjunto:
T = {x/x =
x12
x3

; x  N}
a) {3} b) {3, 4} c) {0, 3} d) {0, 3, 4} e) {0,4}
8. ¿Cuántos de los siguientes conjuntos son vacíos?
A = {x  N/ x + 1 = 0} ; B = {x  Z/ 3x + 1 = 0}
C = {x  Q/ x2
- 7 = 0} ; D = {x  R/ x4
+ 4 = 0}
a) 1 b) 2 c) 3 d) F.D. e) Todos
9. Calcular la suma de los elementos del conjunto:
A = {x/x  N; 10 < 3x + 2 < 18}
a) 10 b) 12 c) 15 d) 18 e) 23
10. Dado el conjunto: B = {x+3/x  Z, x2
< 9}
Calcule la suma de los elementos del conjunto “B”
a) 12 b) 15 c) 3 d) 9 e) 18
11. ¿Cuántos subconjuntos tiene cada uno de los
siguientes conjuntos?
A = {c, o, l, e, g, i, o} ; B = {t, r, i, l, c, e}
a) 64 y 32 b) 128 y 64 c) 64 y 64
d) 32 y 64 e) 128 y 32
Reforzamiento – Pre – Matemática – 2017
Lic. Luis Cañedo Cortez Página 5
12. Hallar la suma de elementos del conjunto:
A = {3a2
+ 5 / a  Z; 1 < a < 6}
a) 172 b) 182 c) 148 d) 156 e) 192
13. Dados:  2
A a 9;b 2   y  B 9;10 
Si se sabe que A = B. Calcular a – b
a) 9 b) 12 c) -10 d) -9 e) -12
14. Si los conjuntos “M” y “N” son iguales, hallar
“m + n”.
 n
M m ;12 ,  N mn;81
a) 5 b) 6 c) 7 e) 8 d) 9
15. Indique cuántos subconjuntos tiene:
 M x / 2x 3 13   
a) 64 b) 32 c) 128 d) 16 e) 120
16. Hallar “a + b + c”, si el conjunto “M” es unitario
 2
M a 3;3b c 4;6a 2;5b 7     
a) 13 b) 14 c) 15 d) 16 e) 17
17. Determinar por extensión el conjunto “A”:
 2 3
A x / x 12x x   
a) {0} b) {0; 3} c) {0; -3; 4} d) {0; 4}
Nunca consideres el estudio como una obligación, sino
como una oportunidad para penetrar en el bello y
maravilloso mundo del saber.
Albert Einstein (1879-1955)
Razonamiento Matemático
CUATRO OPERACIONES
Método del cangrejo
En este tipo de problemas se comienza a resolver desde
el final, es decir, a partir del último resultado regresando
hasta el inicio del problema, haciendo en cada caso la
operación inversa a las operaciones indicadas.
Ejemplo:
Si a la edad que tiene tu padre lo multiplicas por 6; luego
lo divides entre 10 y el cociente lo multiplicas por 4,
añadiendo enseguida 42, obtendrías 162. ¿Cuál es la
edad de tu padre?
Resolución:
Rpta: La edad de tu padre es 50 años
Nota:
Este procedimiento también se puede realizar en forma
horizontal, colocando arriba las operaciones directas y
abajo las inversas.
Ejercicios:
1. Si al doble de un número entero positivo, lo
disminuimos en 3, lo elevamos al cuadrado, para
luego multiplicarlo por 4; y a este resultado le
quitamos 3; elevando lo que resulta al cuadrado,
obtenemos como respuesta 1. Halla el número.
Rpta.: El número es 2.
Reforzamiento – Pre – Matemática – 2017
Lic. Luis Cañedo Cortez Página 6
2. Un número se multiplica por 3, luego al producto se le
resta 6 y al resultado se le divide entre 2, para luego
sacarle raíz cuadrada. Finalmente el último resultado
es elevado al cubo, y se obtiene 27. ¿Cuál es el
número original?
A) 8 B) 6 C) 10 D) 9 E) 4
3. Un estudiante gastó todas las hojas de su cuaderno en
2 días y lo hizo de la siguiente manera: cada día gastó
la mitad de hojas en blanco que le quedaban, más 6
hojas. ¿Cuántas hojas tenía el cuaderno?
Rpta. 36 hojas
4. A un cierto número lo dividimos entre 4, al resultado
hallado le sumamos 8, a este resultado los
multiplicamos por 3, a este nuevo resultado le
restamos 8, a este resultado le extraemos la raíz
cuadrada, obteniendo como resultado final 5. Halla
dicho número.
a) 12 b) 10 c) 14 d) 9
5. En un lejano pueblo todos veneran a un santo
milagroso, pues triplica el dinero de los fieles con la
sola condición de entregarle S/.40 de limosna por
cada milagro. Si después de acudir a él por tres veces
consecutivas, Henry termina con S/.560. ¿Cuánto
tenía al principio?
a) S/. 40 b) S/. 42 c) S/. 45 d) S/. 47
6. Mi propina la multiplico por 3, a este producto le
aumento S/.28, a la suma la dividimos por 2, al
cociente obtenido le agrego 5 y al resultado le
extraigo la raíz cuadrada, obteniendo finalmente 5
como resultado. ¿Cuánto dinero tenía de propina al
inicio?
A) S/.4 B) S/.6 C ) S/.8 D) S/.10 E ) S/.12
7. Si al número total de patas de conejo que hay en un
corral se le multiplica por 3, al producto se le extrae la
raíz cúbica y luego al resultado se le resta 3, a la
diferencia se la eleva al cubo, obteniendo un número
al cual luego de sumarle 3 y dividirlo entre 3, se
obtiene 10 como resultado final. ¿Cuántos conejos
hay?
A) 13 B) 16 C ) 18 D ) 15 E ) 20
Método del rombo
En este método los datos se ubican en los vértices de un
rombo, en donde se indican mediante flechas la forma
cómo operar.
Ejemplo:
Debo pagar S/.490 con 31
billetes de S/.10 y S/.20.
¿Cuántos billetes de S/.10
debo emplear?
Resolución:
Ejercicios:
1. A una función de cine asistieron un total de 350
personas entre niños y niñas. Recaudaron S/.1550
debido a que cada niño pagó S/.5 y cada niña S/.4.
Calcula la diferencia entre el número de niñas y
niños.
Rpta. 50
2. En la factoría “Yayito” hay entre bicicletas y autos
300 vehículos, y el número de llantas es 800.
¿Cuántos autos hay?
Rpta. 100
3. Un entomólogo tiene una colección de 27 insectos,
entre moscas y arañas. En total se cuentan 186
“patitas”. ¿Cuántas moscas hay en la colección?
A) 12 B) 18 C) 15 D) 9 E) 16
4. En una prueba de ingreso un alumno gana 2 puntos
por respuesta correcta pero pierde un punto por
cada equivocación. Si después de haber contestado
50 preguntas obtiene 76 puntos, ¿cuántas contestó
equivocada?
A) 6 B) 7 C) 8 D) 9 E) 10
Reforzamiento – Pre – Matemática – 2017
Lic. Luis Cañedo Cortez Página 7
5. Para recaudar fondos para la promoción de quinto
se llevó a cabo una función de teatro en el colegio
“SLG”. Cada estudiante pagó S/. 25 por el ingreso y
cada adulto S/. 40. Determina la cantidad de
estudiantes asistentes a la función si la recaudación
total asciende a S/. 12 300 y el total de asistentes es
de 420 personas.
A) 300 B) 250 C) 320 D) 280 E) 310
6. Un microbusero recaudó S/. 820, en uno de sus
recorridos; habiéndose gastado 320 boletos entre
pasajes entero y medio pasaje; los primeros cuestan
S/. 3 y los últimos S/. 1,60. Además el número
de universitarios supera al número de niños en 20 y
tanto los niños como los universitarios son los
únicos que pagan medio pasaje.
Son ciertas:
I. Suponiendo que los niños no pagan; el
microbusero estaría perdiendo S/. 56
II. Hay 60 universitarios.
III. Se gastó 240 boletos en pasaje entero.
A) I y II B) II y III C) Todas
D) Solo I E) Solo II
Método del rectángulo
En este tipo de problemas participan dos cantidades
excluyentes, que se comparan en 2 oportunidades
originándose en un caso ganancia y en otro pérdida.
Para poder aplicar este método, el problema debe
presentar las siguientes características:
Deben participar dos cantidades excluyentes, una mayor
que la otra, y deben compararse entre sí las dos
cantidades, originándose en un caso, un sobrante (o
ganancia) y en otro, un faltante (o pérdida).
Ejemplo:
Para ganar S/. 200 en la rifa de una grabadora se
imprimieron 640 boletos, sin embargo solo se vendieron
210, y se originó una pérdida de S/. 15. Determina el valor
de la grabadora.
Resolución:
Usamos el método del rectángulo:
boletos pérdida
640 +200
(–) (–)
210 –15
Precio de cada boleto  200 15 215
0,5
640 210 430
 
  

Precio de la grabadora = 640 x 0,5 – 200 = S/. 120
Ejercicios:
1. Para ganar S/.30 en la rifa de una pelota se hicieron
80 boletos, pero no se vendieron más que 70,
originándose una pérdida de S/.20. ¿Cuánto valía la
pelota?
Rpta. S/.370
2. Los alumnos del profesor “Lucho” deciden
obsequiarle una Laptop. Si cada uno diera S/.100,
faltarían S/.320; pero si cada uno da S/.120,
sobrarían S/.120. ¿Cuánto cuesta la Laptop?
Rpta. La Laptop cuesta S/.2 520
3. Un campesino pensaba así: “Si vendo todos los
sacos de arroz a S/.35 cada uno, perdería S/.120,
pero si los vendo a S/.42 cada uno, ganaría S/.90.
¿Cuál es el costo de todos los sacos de arroz?
A) S/.1 800 B) S/.1 400 C) S/.1 200
D) S/.1 170 E) S/.1 320
4. Pepe tiene tanto dinero como para comprar 24
chocolates y aún le sobra S/.15, pero si quisiera
comprar 36 chocolates, le faltaría S/.9. ¿Cuánto
dinero tiene Pepe?
A) S/.56 B) S/.52 C) S/.48 D) S/.72 E) S/.63
5. Si una señora compra 3 macetas con el dinero que
tiene, le sobraría S/.12. Entonces, decide comprar
una maceta más y le sobra solo S/.4. ¿Cuánto tenía
la señora?
A) S/.32 B) S/.30 C) S/.28 D) S/.36 E) S/.42
6. Un grupo de amigos va al estadio y sucede lo
siguiente: para entrar todos a oriente (40 soles la
entrada) faltaría dinero para 3 de ellos, pero para
entrar todos a popular (30 soles la entrada) tendrían
para una entrada más. ¿Cuántos amigos son?
A) 14 B) 15 C) 16 D) 17 E) 18
Regla de la con junta
Esta regla consiste en formar con los datos una serie de
equivalencias con la salvedad de que en una misma
columna no deben existir dos datos de la misma especie.
Luego se multiplican ordenadamente estas equivalencias
y se halla el valor de la incógnita.
Ejemplo:
Por una sandía me dan 4 manzanas, por 2 manzanas
recibo 3 mangos. ¿Cuántas sandías me darán por 24
mangos?
Reforzamiento – Pre – Matemática – 2017
Lic. Luis Cañedo Cortez Página 8
Resolución:
Rpta.: Me darán 4 sandías.
Ejercicios.
1. Sabiendo que 6 kilogramos de sandía cuesta lo
mismo que 4 kilogramos de papaya, 3 kilogramos de
papaya valen lo mismo que 2 kilogramos de
plátanos; 5 kilogramos de plátanos cuestan 18 soles.
¿Cuánto costarán 10 kilogramos de sandía?
A) 24 soles B) 20 soles C) 18 soles
D) 22 soles E) 16 soles
2. En una feria, por 8 melocotones dan 5 peras, por
cada 10 peras dan 3 piñas; por cada 4 piñas dan 1
docena de naranjas; si 5 naranjas cuestan S/.16.
¿Cuánto pagará por 12 melocotones?
Rpta. S/.21,60
3. En la librería “Joselito” 14 lapiceros cuestan lo
mismo que 6 plumones, 8 plumones lo mismo que 5
motas, 3 motas cuestan S/.35. ¿Cuánto tengo que
gastar para adquirir 16 lapiceros?
Rpta. S/.50
4. Un carpintero cobra lo mismo por confeccionar 4
sillas o 3 sillones, también cobra lo mismo por
confeccionar 9 sillones o 2 mesas. Si 3 mesas
cuestan S/.450, ¿cuánto cuestan 6 sillas?
A) S/.100 B) S/.120 C) S/.220
D) S/.150 E) S/.180
Geometría
Ángulo
Bisectriz de un ángulo.
OM : Bisectriz
Clasificación de los ángulos.
Ángulos Convexos Áng. No-Convexo
CLASIFICACIÓN DE LOS ÁNGULOS CONVEXOS
a) Según sus Medidas :
a.1 ∢ Agudo a.2 ∢ Recto
a.3 ∢Obtuso a.4 ∢Llano
a.5 ∢ De una Vuelta
b) Según sus lados y la suma de sus medidas.
b.1 ∢ Adyacentes
b.2 ∢ Consecutivos
A
O
B
º
Notación:
∢AOB : Ángulo AOB ó

AOB :
Ángulo AOB
m∢AOB : Medida del ángulo AOB
→ m∢AOB = º
M
A
B
°
°
O
O sea :
m∢AOM = m∢MOB = º
°
°
0º < º < 180º 180º < º < 360º
°
°
0° < ° < 90° ° = 90°
º
º
90° < º < 180° º = 180°
°
º = 360°
º
º
º
º
º º
º
Reforzamiento – Pre – Matemática – 2017
Lic. Luis Cañedo Cortez Página 9
b.3 opuestos por el vértice
b.3 ∢ Complementarios
Cº = 90º - º
b.4 ∢ Suplementarios
Sº = 180º - º
Ejercicios:
1. AOB y BOC son consecutivos;
m AOC = 80° y m AOB = 48°. Si OMes
bisectriz del AOC, calcular: m MOB.
a) 6° b) 8° c) 10° d) 12°
2. EL doble del complemento de un ángulo equivale
al complemento de la mitad del ángulo. Hallar
dicho ángulo.
a) 60° b) 30° c) 40° d) 80°
3. Hallar “α”, si: m POQ – m QOR = 64°.
(OM: Bisectriz del POR)
a) 32° b) 30° c) 36° d) 42°
4. Calcular “x”
a) 40º
b) 70º
c) 100º
d) 110º
e) 150º
5. Se tiene un ángulo en el cual la suma de su
complemento y su suplemento es tres veces el
valor del ángulo, calcular el suplemento del
complemento del ángulo en mención.
a) 120º b) 124º c) 144º d) 126º e) 108º
6. Reducir la siguiente expresión:
E =
º162º36
º54
SSSCCC
SSSSSCCCCC

a)
3
1
b)
2
1
c) 3 d) 2 e) 1
7. Si a un ángulo le restamos su suplemento resulta
ser el triple de su complemento, calcular el
complemento del ángulo.
a) 45º b) 36º c) 54º d) 90º e) 72º
8. Se tiene los ángulos consecutivos AOB, BOC y
COD, de manera que:
m AOB m BOC m COD
3 4 5
  y m AOD= 48º
Calcular: mCOD - mAOB
a) 4º b) 8º c) 12º d) 16º e) 18º
9. Calcular : SSSCCCº, si : CCCSSSSCCº = 40º
a) 10º b) 20ºc) 40º d) 140º e) 70º
10. Sean los ángulos consecutivos AOB y BOC, se
trazan las bisectrices OM del ∠AOC y ON del
∠BOC. Si el ∠MON mide 20º. Calcule: m ∠AOB
a) 30º b) 32º c) 36º d) 40º e) 45º
Ángulos formados por dos rectas paralelas
y una secante
Si: 21 L//L es intersectada por la transversal L .
Ángulos Alternos (iguales)
a) Internos:  =  ;  = 
b) Externos:  =  ;  = 
Ángulos correspondientes (iguales)
 =  ;  =  ;  =  ;  = 
Ángulos conjugados (suplementarios)
1. Internos:  +  = 180° ;  +  = 180°
2. Externos:  +  = 180° ;  +  = 180°
Propiedades:
1. Si: 21 L//L
Se cumple:
x =  + 
º
º
º + º = 90°
mº
nº
mº + nº = 180°
α θ α = θ
α
M
Q
O
P
R
º
º º
º
X°
40º
 

 





x
Reforzamiento – Pre – Matemática – 2017
Lic. Luis Cañedo Cortez Página 10
En general: ( 21 L//L )
Se cumple:
 +  +  +  =  +  + 
2. Si: 21 L//L
Se cumple
 +  +  = 360°
3. Si: 21 L//L
Se cumple:
 +  +  +  +  = 180°
x =  +  +  + 
Ejercicios:
1. En la figura: L1 // L2. Calcular el valor de:





A) 1
B) 2
C) 3
D) 4
E) 5
2. En la figura: DE//AB ; calcular x.
A) 110°
B) 120°
C) 130°
D) 140°
E) 150°
3. Calcule “x”, 1 2L // L
a) 18º b) 36º c) 12º d) 24º e) 32º
4. Si: 1 2L // L , calcule “x”.
a) 70º b) 48º c) 60º d) 40º e) 72º
5.
6. En la figura 21 L//L , EFCEyBACB  . Hallar
la mDFE.
A) 10° B) 15° C) 20° D) 35° E) N.A.
7. Hallar x, si L1 // L2
A) 38º
B) 43º
C) 50º
D) 53º
E) 57º
8. Hallar , si L1 // L2
A) 100º
B) 110º
C) 120º
D) 130º
E) 140º














x
A B
C
D E
x°20°
50°
L1
L2



80°
C
A
B
D F L2
L1

 
x
20°
E
75°
18°
10°
20°
x
L1
L2
3 

L2L1
100º
Reforzamiento – Pre – Matemática – 2017
Lic. Luis Cañedo Cortez Página 11

C
BA
b
a
c

Razones trigonométricas de un ángulo agudo
de triángulo rectángulo
Sea el triángulo rectángulo ABC recto en B.
Definimos con respecto a :
Seno de  
b
a
H
CO
sen 
Coseno de  
b
c
H
CA
cos 
Tangente de   tan
CO a
CA c
  
Cotangente de   cot
CA c
CO a
  
Secante de  
c
b
CA
H
sec 
Cosecante de  
a
b
CO
H
csc 
Por ejemplo:
3
1
sen   csc = 3
Propiedad:
sen α x csc α = 1
cos α x sec α = 1
tan α x cot α = 1
Teorema de Pitágoras.
En todo triángulo rectángulo se cumple:
“La suma de los cuadrados de los
catetos es igual al cuadrado de la
hipotenusa”
a2
+ c2
= b2
Propiedad de la tangente y cotangente
tan α =
𝑠𝑒𝑛 𝛼
cos 𝛼
; cot α =
cos 𝛼
𝑠𝑒𝑛 𝛼
Ángulo mitad:
Actividad:
1. Se sabe que tanx = 0,333… Calcular:
R= sen2x – cos2x + cot2x
a) 22/9 b) 8,2 3/8 d) 2,8 e) 1
2. Si: sec θ = 1,25 ; además: Csc β = 4cot θ + csc θ
Calcular: cot β
a) √3 b) 2√3 c) 3√3 d) 4√3 e) 5√3
3. Se tiene un triángulo rectángulo ABC. Calcular:
b b c
P senA senC tgA
a c a
  
a) a+b+c b) 2a c) b d) 2c e) 3
4. En un triángulo rectángulo ABC, recto en "B", se
cumple que: 3tanA = 2cscC.
Calcular: M = √5 tgA + 6secC
a) 5 b) 7 c) 9 d) 11 e) 13
5. Sabiendo que: 23+tg
= 43; donde "" es un
ángulo agudo, calcular: C = 2sec2 + 10sen2
a) 17 b) 19 c) 21 d) 25 e) 29
6. En el triángulo ABC, recto en “B”, se sabe que:
5 Cos A = 3; hallar el valor de:
 12 tan A cot A
R
5secA


a) 6 b) 3 c) 5 d) 9 e) 12
7. En un triángulo rectángulo ABC (C = 90°) se verifica
que:
a b 7
a b 5



Hallar: E = SenA + SenB
a)
37
7
b)
5√37
37
c)
7√37
71
d)
7√37
37
e)
5
37
8. Si:  
2sen2
cos cos

   ; hallar:
N=Cosθ+Cotθ
a)
5√3
4
b)
5√15
4
c)
2√3
3
d)
3√3
2
e)
5√3
2
9. Si:  
3cot8
tan tan

   ; hallar:
N= sen2θ + Tan2θ
a) 15 b) 4/15 c) 15/4 d) 3/13 e) 13/3

C
BA
b
a
c

Elementos:
- a: cateto opuesto al
ángulo 
- c: cateto adyacente
al ángulo .
- b: hipotenusa
I
N
V
E
R
S
A
S
inversas
tan
𝜃
2
= csc θ – cot θ
cot
𝜃
2
= csc θ + cot θ
Reforzamiento – Pre – Matemática – 2017
Lic. Luis Cañedo Cortez Página 12
10. Sabiendo que:
2 2
2 2
a b
sen
a b

 

El valor de: T = ab(sec θ – tan θ), es:
a) 0 b) a2 c) b2 d) – a2 e) – b2
11. Si A y B son los ángulos agudos de un triángulo
rectángulo. Simplíficar:
senA cosA
T cscB cscA
cscB secB
 
  
 
A) 4ab B) 3bc C) 2 D) a E) b
12. Del triángulo rectángulo mostrado, calcular la
tangente del mayor ángulo agudo:
A) 2,4
B) 3,5
C) 5,2
D) 6,5
E) 60
13. Hallar: E = 2 cot
𝜃
2
– 3
a) √3 b) 2 √3 c) √5 d) √7 e) 2 √5
14. A partir del gráfico mostrado, calcular;
N = tg
𝜃
2
+ cot
𝜃
2
A) 4
B) 2,5
C) 8
D) 10
E) 12
Propiedades de las razones trigonométricas.
 Reciprocas.
 Complementario.
sen = cos
tg = ctg
sec = csc
Ejercicios de aplicación.
1. Si : tan 3x . cot(x + 40°) = 1. Calcular : Cos 3x
a) 1 b) ½ c) 3 d) 3 /2 e) 3/5
2. Hallar “x” si : cos(2x – 10°) sec(x + 30°) = 1
a) 10° b) 20° c) 30° d) 40° e) 50°
3. Si: sen 7x sec 2x = 1.
Calcular:
E = tg2
6x + tg(x + 42º - y) . tg(3x + y + 8°)
a) 1 b) 3 c) 4 d) 5 e) 6
4. Determine “x” :
sec(2x - 8) = sen 40° csc 40° +
º75ctg
º15tg
a) 17° b) 20° c) 28° d) 30° e) 34°
5. Calcular:
º50csc
º40sec3
º70ctg
º20tg2
º80cos
º10sen
E 
a) 1 b) 2 c) 0 d) -1 e) -2
sen . csc = 1
cos . sec = 1
tg . ctg = 1
Siempre y cuando:
 = 
Siempre y cuando:
 +  = 90°
(Complementarios
)
Reforzamiento – Pre – Matemática – 2017
Lic. Luis Cañedo Cortez Página 13
Razones trigonométricas de ángulos notables.
Estas razones se obtienen a partir de triángulos
rectángulos notables donde la proporción entre sus lados
y la medida de sus ángulos interiores es conocida.
Triángulos notables.
Triángulos aproximados.
Ejercicios de aplicación.
1. Calcular: E = (sen30º + cos60º)tg37º
a) 1 b) 2 c) ¼ d) 3/4 e) 4/3
2. Determine el valor de “m” para que “x” sea
30º.
1m
1m
x2cos



a) 2 b) 3 c) 4 d) 5 e) 6
3. Del gráfico hallar: ctg
a) 1,6
b) 1,7
c) 0,4
d) 0,6
e) 1,4
4. Calcular:
E = (sec245º + tg45º) ctg37º - 2cos60º
a) 0 b) 1 c) 2 d) 3 e) 4
5. Calcular: “x”
3xsec53º - tg45º = sec60º(sec45º + sen45º)csc30º
a) 1 b) 2 c) 3 d) 4 e) 5
6. Calcular: E = (tg60º + sec30º - sen60º)sec60º
a) 25/12 b) 25/24 c) 49/12 d) 49/24 e) 7/18
7. Calcular:
º45sen
º30cosº37senº60secº30tg
E
2


a)
5
3
b)
5
311
c)
5
33
d)
3
35
e)
5
32
a
a
45
45
a
2a
60º
30º
a
5a 3a
37º
53º
4a
25a 7a
16º
74º
24a
a
8º
82º
7a
x + 3
2x + 1 5x - 3
45º


Más contenido relacionado

PDF
Ejercicios resueltos-vectores-2016
PDF
Meca1 estatica de una particula2016
PDF
Respuestas.ejercicios
PPT
UPCH Presentación de la clase 3
PDF
Respuestas De Las Derivadas
PDF
Cuaderno de actividades cinematica mc graw hill
PDF
Guía de ejercicios mecánica racional prof g caraballo
PPTX
Fuerza centrípeta
Ejercicios resueltos-vectores-2016
Meca1 estatica de una particula2016
Respuestas.ejercicios
UPCH Presentación de la clase 3
Respuestas De Las Derivadas
Cuaderno de actividades cinematica mc graw hill
Guía de ejercicios mecánica racional prof g caraballo
Fuerza centrípeta

La actualidad más candente (19)

PDF
Guia prevencion de_armas_en_las_escuelas
PDF
Problemas Resueltos (Leyes de Nwton) - Serway
PDF
Algebra Lineal 7ma Edición Stanley L. Grossman.pdf
PDF
Examen fisica hidrostatica e hidrodinamica 2009
DOC
Aplicacion de la derivada
PPTX
Trabajo mecanico
PDF
Limites
PPT
Fisica moderna
PDF
Cosenos directores
PPTX
Sistemas de Inecuaciones
PPTX
Clase de Física I, Problemas del mruv
PPT
Ejercicio 2.5
DOCX
Practica1 aceleracion-de-la-gravedad
DOCX
Movimiento rectilineo uniforme y variado
PDF
Vectores teoria ejercicios
PPT
Dinámica del movimiento circular uniforme
DOCX
68584 guia de ejercicios resueltos movimiento de proyectiles (1)
PPT
Cinematica Rotacional y Rotacion de Cuerpos Rigidos.ppt
PDF
Diptico violencia acoso y hostigamiento
Guia prevencion de_armas_en_las_escuelas
Problemas Resueltos (Leyes de Nwton) - Serway
Algebra Lineal 7ma Edición Stanley L. Grossman.pdf
Examen fisica hidrostatica e hidrodinamica 2009
Aplicacion de la derivada
Trabajo mecanico
Limites
Fisica moderna
Cosenos directores
Sistemas de Inecuaciones
Clase de Física I, Problemas del mruv
Ejercicio 2.5
Practica1 aceleracion-de-la-gravedad
Movimiento rectilineo uniforme y variado
Vectores teoria ejercicios
Dinámica del movimiento circular uniforme
68584 guia de ejercicios resueltos movimiento de proyectiles (1)
Cinematica Rotacional y Rotacion de Cuerpos Rigidos.ppt
Diptico violencia acoso y hostigamiento
Publicidad

Similar a Reforzamiento pre-matemática-2017-i (20)

PDF
INTELECTUM 2 3 4.pdf
PDF
Algebra lineal 27 exactas e ingenieria
PDF
Práctica Álgebra exactas-ingeniería CBC (27)
PDF
I convocatoria matemática x año curso 2015
PDF
Cuadernillo n°2 elica
PDF
CUADERNILLO DE ARITMETICA ACTIVIDADES.pdf
PPTX
PPT PROBLEMAS DEL 37-48 JOSEPH.pptx
DOC
16-Circunferencia-Geometria-Tercero-de-Secundaria.doc
PPTX
Vectores nuestra señora de la asunción
DOC
EXÁMEN
PDF
Ex resuelto cc0708
PPTX
Teoría de conjuntos.Teoría de conjuntos.Teoría de conjuntos.Teoría de conjuntos.
PDF
Examen Cepreuni
PDF
Matematica.solucionario uni....
PDF
Aritmetica san marco
PDF
Balotario de trigonometria junio 2013
PDF
Trigo sem-4-cepre
PDF
OLIMPAMER - TROMPETEROS
INTELECTUM 2 3 4.pdf
Algebra lineal 27 exactas e ingenieria
Práctica Álgebra exactas-ingeniería CBC (27)
I convocatoria matemática x año curso 2015
Cuadernillo n°2 elica
CUADERNILLO DE ARITMETICA ACTIVIDADES.pdf
PPT PROBLEMAS DEL 37-48 JOSEPH.pptx
16-Circunferencia-Geometria-Tercero-de-Secundaria.doc
Vectores nuestra señora de la asunción
EXÁMEN
Ex resuelto cc0708
Teoría de conjuntos.Teoría de conjuntos.Teoría de conjuntos.Teoría de conjuntos.
Examen Cepreuni
Matematica.solucionario uni....
Aritmetica san marco
Balotario de trigonometria junio 2013
Trigo sem-4-cepre
OLIMPAMER - TROMPETEROS
Publicidad

Más de Luis Cañedo Cortez (20)

PDF
Repaso reforzamiento mat_4_to_2018_i
PPSX
Movimiento ondulatorio
PDF
Banco de preguntas preparación admisión 2017
PDF
PDF
Cuatro operaciones
PDF
Separata trigonometria 2017
PDF
R.m. 4to.grado-teoría de exponentes-polinomios-logaritmo
PDF
René descartes
PDF
Pitágoras de samos
PDF
Hipatia de alejandria
PPTX
Igv 2do.-sec.
PPTX
Emanación de co2 por vehículos
PDF
Ficha de trabajo emanación de co2 por vehiculo-4to-sec.
PDF
Fichas de trabajo 1 2-3-4 segundo año
DOCX
Banco de preguntas de admisión
PDF
áRea regiones planas
PDF
Ecuacionesexponenciales formulario
PDF
Fichas de trabajo 1 2-3 cuarto grado
PDF
Progresiones aritméticas
PDF
Demostrando lo que aprendimos
Repaso reforzamiento mat_4_to_2018_i
Movimiento ondulatorio
Banco de preguntas preparación admisión 2017
Cuatro operaciones
Separata trigonometria 2017
R.m. 4to.grado-teoría de exponentes-polinomios-logaritmo
René descartes
Pitágoras de samos
Hipatia de alejandria
Igv 2do.-sec.
Emanación de co2 por vehículos
Ficha de trabajo emanación de co2 por vehiculo-4to-sec.
Fichas de trabajo 1 2-3-4 segundo año
Banco de preguntas de admisión
áRea regiones planas
Ecuacionesexponenciales formulario
Fichas de trabajo 1 2-3 cuarto grado
Progresiones aritméticas
Demostrando lo que aprendimos

Último (20)

PDF
Ficha de Atencion a Padres de Familia IE Ccesa007.pdf
PDF
Jodorowsky, Alejandro - Manual de Psicomagia.pdf
PPTX
RCP avanzado_Luis Minaya_ Septiembre 25.pptx
PDF
Cuaderno_Castellano_6°_grado.pdf 000000000000000001
PDF
ESTRATEGIAS_PARA_CONSTRUIR_LA_CONVIVENCI.pdf
PDF
KOF-2022-espanol-mar-27-11-36 coke.pdf jsja
PDF
Andaluz. Manual de Derecho Ambiental - Instituto de Investigación y Gestión T...
PDF
Estadística Aplicada a la Psicología y Ciencias de la Salud Ccesa.pdf
PDF
Carta magna de la excelentísima República de México
PDF
KOF-2022-espanol-mar-27-11-36 coke.pdf tv
PPTX
Temporada de Huracanes 2025 Atlántico.pptx
PDF
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
PDF
Uso de la Inteligencia Artificial en la IE.pdf
PDF
ciencia_tecnologia_sociedad Mitcham Carl. (1994)..pdf
PDF
Diversos-Rostros-de-la-EPJA-una-vision-desde-universidades-publicas-latinoame...
PDF
E1 Guía_Matemática_5°_grado.pdf paraguay
PDF
COLECCIÓN DE PENSADORES FILOSÓFICOS MÁS REPRESENTATIVOS.
PDF
El Genero y Nuestros Cerebros - Gina Ripon Ccesa007.pdf
PDF
UNIDAD 2 | La noticia como género: Informar con precisión y criterio
PDF
Lección 8. Esc. Sab. El pacto en el Sinaí.pdf
Ficha de Atencion a Padres de Familia IE Ccesa007.pdf
Jodorowsky, Alejandro - Manual de Psicomagia.pdf
RCP avanzado_Luis Minaya_ Septiembre 25.pptx
Cuaderno_Castellano_6°_grado.pdf 000000000000000001
ESTRATEGIAS_PARA_CONSTRUIR_LA_CONVIVENCI.pdf
KOF-2022-espanol-mar-27-11-36 coke.pdf jsja
Andaluz. Manual de Derecho Ambiental - Instituto de Investigación y Gestión T...
Estadística Aplicada a la Psicología y Ciencias de la Salud Ccesa.pdf
Carta magna de la excelentísima República de México
KOF-2022-espanol-mar-27-11-36 coke.pdf tv
Temporada de Huracanes 2025 Atlántico.pptx
Los10 Mandamientos de la Actitud Mental Positiva Ccesa007.pdf
Uso de la Inteligencia Artificial en la IE.pdf
ciencia_tecnologia_sociedad Mitcham Carl. (1994)..pdf
Diversos-Rostros-de-la-EPJA-una-vision-desde-universidades-publicas-latinoame...
E1 Guía_Matemática_5°_grado.pdf paraguay
COLECCIÓN DE PENSADORES FILOSÓFICOS MÁS REPRESENTATIVOS.
El Genero y Nuestros Cerebros - Gina Ripon Ccesa007.pdf
UNIDAD 2 | La noticia como género: Informar con precisión y criterio
Lección 8. Esc. Sab. El pacto en el Sinaí.pdf

Reforzamiento pre-matemática-2017-i

  • 1. Reforzamiento – Pre – Matemática – 2017 Lic. Luis Cañedo Cortez Página 1 TRIGONOMÉTRIA Sistema de medición angular Ángulo trigonométrico Es la figura que se genera por la rotación de un rayo alrededor de un punto fijo llamado vértice desde una posición inicial (lado inicial) hasta una posición final (lado final). Elementos.  O → vértice  OA → lado inicial  OB ∧ OC → lado final  α ángulo trigonométrico positivo (rotación antihoraria).  θ ángulo trigonométrico negativo (rotación horaria). Sistema sexagesimal (Inglés) NOTACIÓN EQUIVALENCIA Un grado sexagesimal: 1° Un minuto sexagesimal: 1’ Un segundo sexagesimal: 1’’ 1° = 60’ 1’ = 60’’ m 1v = 360° Sistema centesimal (francés) NOTACIÓN EQUIVALENCIA Un grado centesimal: 1 g Un minuto centesimal: 1 m Un segundo centesimal: 1 s 1 g = 100 m 1 m = 100 s m 1v = 400g Sistema radial (circular) En este sistema la unidad se denomina RADIÁN que se define como la medida del ángulo central que subtiende un arco en una circunferencia con longitud igual al radio. Equivalencias de conversión m 1 2 V = 180° = 200 g =  rad 9° = 10 g RELACIÓN DE LOS TRES SISTEMAS DE MEDIDAS ANGULARES Sean S, C y R los números que representan la medida de un ángulo en los sistemas sexagesimal, centesimal y radial respectivamente. Se tiene: 𝑆 180 = 𝐶 200 = 𝑅 𝜋 S 180k S C R k C 200k 180 200 R k            S 9k S C R k C 10k 9 10 20 R k 20               Actividad. 1. Del gráfico, hallar: "x". a) 24° b) 27° c) 30° d) 32° e) 36° 2. Del gráfico, hallar: xº a) 9 b) 12 c) 15 d) 16 e) 20 3. Del gráfico, calcular "x". A. 3 B. 7 C. 5 D. 9 4. Del gráfico, hallar "x", si: L1//L2. a) α - β d) α - β +180º b) α+β +180º e) α+β +360º c) α - β +360º 5. Sabiendo que: rad a0 3b'1c" 17    ; calcular: a c 1 K b    A. 5/2 B. 3/4 C. 5/3 D. 2
  • 2. Reforzamiento – Pre – Matemática – 2017 Lic. Luis Cañedo Cortez Página 2 6. Del gráfico, calcular "x". A. 3 B. 7 C. 5 D. 9 7. Señale el valor de: θ = 𝜋 9 rad + 60g en el sistema sexagesimal. A. 64° B. 76° C. 69° D. 74° 8. Calcular: g25 50 rad 3E g64 40 rad 6        a) 1 b) 2 c) 3 d) 4 e) 5 9. Hallar: "x" si se cumple: a) 12 b) 17 c) 24 d) 20 e) 10 10. Sabiendo que: rad a 5b'5c'' 37    ; calcular: a c b  . a) 2 b) 3 c) 4 d) 6 e) 8 11. En un triángulo, dos de sus ángulos interiores miden 7 rad 108  y 144 g . ¿Cuál es la medida sexagesimal del tercer ángulo? a) 28°32' b) 38°34' c) 48°22' d) 28°42' e) 38°44' 12. Calcular: g m 3 40 1 K 1' 10"   a) 1,24 b) 2,16 c) 2,24 d) 2,4 13. Al reducir la expresión se obtiene:   2 2 2C S 2C S P 400R     a) 319 b) 309 c) 303 d) 296 e) 285 14. Siendo S, C y R lo convencional, simplificar: a) 11,5 b) 13,5 c) 15,5 d) 27,5 e) 20 15. Calcular: s m 3 40 1 K 1' 10"   A. 1,24 C. 2,16 B. 2,24 D. 2,4 16. Siendo S y C lo convencional, hallar un ángulo en radianes, si: S = n + 1 C = n + 2 a) /5 b) /10 c) /15 d) /20 e) /25 GEOMETRÍA SEGMENTO DE RECTA Porción determinada de recta. Notación: Segmento “AB” : AB PUNTO MEDIO DE UN SEGMENTO Es el punto que pertenece al segmento y equidista de los extremos. Postulado: La menor distancia entre dos puntos es la longitud del segmento de recta que los une. OPERACIONES CON SEGMENTOS Adición Sustracción Actividad. 1. Sobre una recta se ubican los puntos consecutivos "P", "Q", "R" y "S". Calcule "QR", si: PS=30, PR=20 y QS=22. 2. Sobre una recta se ubican los puntos consecutivos "A", "B", "C" y "D", tal que: Calcule la longitud del segmento que une los puntos medios de los segmentos AB y CD
  • 3. Reforzamiento – Pre – Matemática – 2017 Lic. Luis Cañedo Cortez Página 3 3. Se tienen los puntos colineales “A”, “B”, “C” y “D” de tal manera que: AB = 3BC y AD + 3CD = 12, hallar “BD”. A. 1,5 B. 3 C. 4 D. 6 4. Se tienen los puntos consecutivos “A”, “B”, “C” y “D” de tal manera que: AC + 2DC + BD = 40 y AB = DC, calcular “AD”. A. 10 B. 15 C. 18 D. 20 5. Los puntos consecutivos "A", "M", "B" y "C" pertenecen a la misma recta. "M" es el punto medio de AC. Hallar MB, si: AB - BC = 32 cm. A. 8 cm B. 32 C. 18 D. 16 6. Se tiene los puntos consecutivos A, B y C. Si: 2AB = 3BC ; AC = 20. Hallar “AB” a) 4 b) 8 c) 12 d) 15 e) 16 7. Se tiene los puntos consecutivos A, B, C y D. Si: AC = 12 ; BD = 18 ; AD = 23. Hallar BC. a) 4 b) 5 c) 6 d) 7 e) 9 8. Se tiene los puntos consecutivos P, Q, R y S. Si: PR = 19cm ; QS = 24cm ; PS = 30cm. Hallar “QR”. a) 7cm b) 16cm c) 15cm d) 11cm e) 13cm 9. Se tiene los puntos consecutivos P, Q, R y S. Si: PQ = 2QR ; RS = 4.QR ; PS = 28. Hallar QR a) 5 b) 3 c) 6 d) 2 e) 4 10. Se tiene los puntos consecutivos P, Q y R. Si: PQ QR 2 3  ; PR = 25. Hallar PQ a) 8 b) 10 c) 5 d) 4 e) 15 11. Se ubican en una recta las puntos consecutivos A, B, C y D, de modo que: AB = 2 x 5  , BC= x 5 – 3, CD = 7 5 , AD = 24cm. Calcular el valor de x. a) 6cm b) 12cm c) 21cm d) 15cm e) 14cm 12. Sean los puntos colineales: "O", "A", "B" y "C" tal que: 3AB=BC. Hallar: 3OA OC 4OB  a) 0,5 b) 1,5 c) 2 d) 3 e) 1 13. Sobre una recta se ubican los puntos consecutivos "A", "B", "C" y "D". Si se cumple: AB BC CD 2 3 5   . Calcular "CD", si: AD = 20 a) 6 b) 9 c) 12 d) 8 e) 10 ARITMÉTICA TEORÍA DE CONJUNTOS Noción de conjunto Es una colección o agrupación de objetos bien definidos, llamados elementos, los cuales pueden ser concretos o abstractos. Ejemplo: Vocal de la palabra “murciélago”. Número primo menor que 10. País sudamericano que ha ganado un campeonato mundial de fútbol. Los conjuntos se nombran con letras mayúsculas: A, B, C, ..., etc. Y para denotar a sus elementos se usan las letras minúsculas, a menos que dichos elementos sean, a su vez, conjuntos. Dichos elementos van separados con comas (,) o punto y coma (;) o bien indicando una propiedad común de ellos. Notación: A = { a; e; i; o; u] B = { 2; 3; 5; 7} La notación gráfica consiste en representar los elementos dentro de una figura cerrada (diagrama de Venn-Euler). Conjuntos numéricos.  Números naturales ( )  0;1;2;3;....  Números enteros ( )  ...; 3; 2; 1;0;1;2;3;...     Números racionales ( ) Son aquellos números que resultan de dividir dos números enteros, excepto de dividirlos por cero. 1 1 1 1 2 ...; 1; ; ;0; ; ; ;1;... 2 3 5 4 3           Números irracionales(I ) Son aquellos números no racionales cuya cantidad de cifras decimales es indeterminada.  ...; 5; 2; ; ;...I e    Números reales ( ) Son aquellos números que provienen de la reunión de los números racionales e irracionales. Relación de pertenencia Si x es un elemento del conjunto A, se dice que "x pertenece al conjunto A" y se denota: x ϵ A En el caso de no pertenecer x al conjunto A se denota: x  A. Ejercicio. Colocar el valor de verdad a cada proposición si: A .a .e .i .o .u
  • 4. Reforzamiento – Pre – Matemática – 2017 Lic. Luis Cañedo Cortez Página 4 A = {8; 3; {2}; {1, 3}}  3  A ( )  8  A ( )  2  A ( )  3  {1, 3} ( )  {3}  A ( )  4  A ( ) Determinación de un conjunto Por extensión Cuando se enuncia uno a uno los elementos de un conjunto de manera explícita. Ejemplo: R = {1; 3; 5; 7} Por comprensión Cuando se indica una característica particular y común a todos sus elementos. Ejemplo:  2 1/ 4R x x x     Cardinal de un conjunto Indica la cantidad de elementos diferentes de un conjunto dado. Notación: n(A) se lee: cardinal de A. Ejemplo: A = {1; 2; 5; 6; 5} → n(A) = 4 Clases de conjuntos Conjunto finito Es aquel conjunto que tiene una cantidad limitada de elementos, por lo tanto el proceso de conteo de sus elementos termina en algún momento. Ejemplo: R = {x/x es un número natural menor que 100} Conjunto infinito Es aquel conjunto que posee una cantidad ilimitada de elementos, por lo tanto el proceso e conteo de sus elementos no termina. Ejemplo: R = {x/x es un número natural impar} Conjunto vacío o nulo Es aquel que carece de elementos. Notación:  ; { } Ejemplo: A = {xϵ / 0 < x < 5  x 2 = 100} = { } =  Conjunto unitario Es aquel conjunto que tiene un solo elemento. También llamado singleton. Ejemplo: P = {x/x ϵ ; x 0  x > 0} = {0} Conjunto universal Es el conjunto que contiene a todos los elementos considerados en un contexto determinado. No existe un conjunto universal absoluto y se le denota generalmente por U. Ejemplo: A = {2x + 3 / x ϵ Z / 0 < x < 4} Un conjunto universal para A sería: U = {1; 3; 5; 7; 9; 11} Actividad. 1. Sabiendo que el conjunto: A = {a + b; a + 2b – 2; 10} es un conjunto unitario. Dar el valor de “a2 + b2 ”. a) 16 b) 80 c) 68 d) 58 e) 52 2. Dado el conjunto A = {5; {7}; 9; 12}. Indicar (V) o (F), según corresponda: i) {7}  A ( ) iv) {9}  A ( ) ii) 9  A ( ) v)   A ( ) iii) 7  A ( ) vi) 10  A ( ) a) VFVFVF b) VFFVVF c) VVVFFF d) VVFFFV 3. Dado el conjunto M = {a, {b}, {m}, p}. ¿Cuántas proposiciones son falsas? i) {b}  M iv) {{b}, p}  M ii) b  M v) {{b}, {m}}  M iii) {{m}}  M vi) m  M a) 1 b) 2 c) 3 d) 4 e) 5 4. Sabiendo que los conjuntos: A = {4a + 3b; 23} y B = {3a + 7b; 41} son unitarios. Hallar: “a + b” a) 2 b) 4 c) 5 d) 7 e) 9 5. Sea: 2 1 / 7 9 2 x M x x             Indicar la suma de los elementos de M. a) 170 b) 85 c) 165 d) 129 6. Se tienen los conjuntos unitarios: M = {a2 + 1; 2a} y N = {3x + y; x - y + 12} Halla: a + x + y a) 7 b) 9 c) 6 d) 8 e) 10 7. Determine por extensión el siguiente conjunto: T = {x/x = x12 x3  ; x  N} a) {3} b) {3, 4} c) {0, 3} d) {0, 3, 4} e) {0,4} 8. ¿Cuántos de los siguientes conjuntos son vacíos? A = {x  N/ x + 1 = 0} ; B = {x  Z/ 3x + 1 = 0} C = {x  Q/ x2 - 7 = 0} ; D = {x  R/ x4 + 4 = 0} a) 1 b) 2 c) 3 d) F.D. e) Todos 9. Calcular la suma de los elementos del conjunto: A = {x/x  N; 10 < 3x + 2 < 18} a) 10 b) 12 c) 15 d) 18 e) 23 10. Dado el conjunto: B = {x+3/x  Z, x2 < 9} Calcule la suma de los elementos del conjunto “B” a) 12 b) 15 c) 3 d) 9 e) 18 11. ¿Cuántos subconjuntos tiene cada uno de los siguientes conjuntos? A = {c, o, l, e, g, i, o} ; B = {t, r, i, l, c, e} a) 64 y 32 b) 128 y 64 c) 64 y 64 d) 32 y 64 e) 128 y 32
  • 5. Reforzamiento – Pre – Matemática – 2017 Lic. Luis Cañedo Cortez Página 5 12. Hallar la suma de elementos del conjunto: A = {3a2 + 5 / a  Z; 1 < a < 6} a) 172 b) 182 c) 148 d) 156 e) 192 13. Dados:  2 A a 9;b 2   y  B 9;10  Si se sabe que A = B. Calcular a – b a) 9 b) 12 c) -10 d) -9 e) -12 14. Si los conjuntos “M” y “N” son iguales, hallar “m + n”.  n M m ;12 ,  N mn;81 a) 5 b) 6 c) 7 e) 8 d) 9 15. Indique cuántos subconjuntos tiene:  M x / 2x 3 13    a) 64 b) 32 c) 128 d) 16 e) 120 16. Hallar “a + b + c”, si el conjunto “M” es unitario  2 M a 3;3b c 4;6a 2;5b 7      a) 13 b) 14 c) 15 d) 16 e) 17 17. Determinar por extensión el conjunto “A”:  2 3 A x / x 12x x    a) {0} b) {0; 3} c) {0; -3; 4} d) {0; 4} Nunca consideres el estudio como una obligación, sino como una oportunidad para penetrar en el bello y maravilloso mundo del saber. Albert Einstein (1879-1955) Razonamiento Matemático CUATRO OPERACIONES Método del cangrejo En este tipo de problemas se comienza a resolver desde el final, es decir, a partir del último resultado regresando hasta el inicio del problema, haciendo en cada caso la operación inversa a las operaciones indicadas. Ejemplo: Si a la edad que tiene tu padre lo multiplicas por 6; luego lo divides entre 10 y el cociente lo multiplicas por 4, añadiendo enseguida 42, obtendrías 162. ¿Cuál es la edad de tu padre? Resolución: Rpta: La edad de tu padre es 50 años Nota: Este procedimiento también se puede realizar en forma horizontal, colocando arriba las operaciones directas y abajo las inversas. Ejercicios: 1. Si al doble de un número entero positivo, lo disminuimos en 3, lo elevamos al cuadrado, para luego multiplicarlo por 4; y a este resultado le quitamos 3; elevando lo que resulta al cuadrado, obtenemos como respuesta 1. Halla el número. Rpta.: El número es 2.
  • 6. Reforzamiento – Pre – Matemática – 2017 Lic. Luis Cañedo Cortez Página 6 2. Un número se multiplica por 3, luego al producto se le resta 6 y al resultado se le divide entre 2, para luego sacarle raíz cuadrada. Finalmente el último resultado es elevado al cubo, y se obtiene 27. ¿Cuál es el número original? A) 8 B) 6 C) 10 D) 9 E) 4 3. Un estudiante gastó todas las hojas de su cuaderno en 2 días y lo hizo de la siguiente manera: cada día gastó la mitad de hojas en blanco que le quedaban, más 6 hojas. ¿Cuántas hojas tenía el cuaderno? Rpta. 36 hojas 4. A un cierto número lo dividimos entre 4, al resultado hallado le sumamos 8, a este resultado los multiplicamos por 3, a este nuevo resultado le restamos 8, a este resultado le extraemos la raíz cuadrada, obteniendo como resultado final 5. Halla dicho número. a) 12 b) 10 c) 14 d) 9 5. En un lejano pueblo todos veneran a un santo milagroso, pues triplica el dinero de los fieles con la sola condición de entregarle S/.40 de limosna por cada milagro. Si después de acudir a él por tres veces consecutivas, Henry termina con S/.560. ¿Cuánto tenía al principio? a) S/. 40 b) S/. 42 c) S/. 45 d) S/. 47 6. Mi propina la multiplico por 3, a este producto le aumento S/.28, a la suma la dividimos por 2, al cociente obtenido le agrego 5 y al resultado le extraigo la raíz cuadrada, obteniendo finalmente 5 como resultado. ¿Cuánto dinero tenía de propina al inicio? A) S/.4 B) S/.6 C ) S/.8 D) S/.10 E ) S/.12 7. Si al número total de patas de conejo que hay en un corral se le multiplica por 3, al producto se le extrae la raíz cúbica y luego al resultado se le resta 3, a la diferencia se la eleva al cubo, obteniendo un número al cual luego de sumarle 3 y dividirlo entre 3, se obtiene 10 como resultado final. ¿Cuántos conejos hay? A) 13 B) 16 C ) 18 D ) 15 E ) 20 Método del rombo En este método los datos se ubican en los vértices de un rombo, en donde se indican mediante flechas la forma cómo operar. Ejemplo: Debo pagar S/.490 con 31 billetes de S/.10 y S/.20. ¿Cuántos billetes de S/.10 debo emplear? Resolución: Ejercicios: 1. A una función de cine asistieron un total de 350 personas entre niños y niñas. Recaudaron S/.1550 debido a que cada niño pagó S/.5 y cada niña S/.4. Calcula la diferencia entre el número de niñas y niños. Rpta. 50 2. En la factoría “Yayito” hay entre bicicletas y autos 300 vehículos, y el número de llantas es 800. ¿Cuántos autos hay? Rpta. 100 3. Un entomólogo tiene una colección de 27 insectos, entre moscas y arañas. En total se cuentan 186 “patitas”. ¿Cuántas moscas hay en la colección? A) 12 B) 18 C) 15 D) 9 E) 16 4. En una prueba de ingreso un alumno gana 2 puntos por respuesta correcta pero pierde un punto por cada equivocación. Si después de haber contestado 50 preguntas obtiene 76 puntos, ¿cuántas contestó equivocada? A) 6 B) 7 C) 8 D) 9 E) 10
  • 7. Reforzamiento – Pre – Matemática – 2017 Lic. Luis Cañedo Cortez Página 7 5. Para recaudar fondos para la promoción de quinto se llevó a cabo una función de teatro en el colegio “SLG”. Cada estudiante pagó S/. 25 por el ingreso y cada adulto S/. 40. Determina la cantidad de estudiantes asistentes a la función si la recaudación total asciende a S/. 12 300 y el total de asistentes es de 420 personas. A) 300 B) 250 C) 320 D) 280 E) 310 6. Un microbusero recaudó S/. 820, en uno de sus recorridos; habiéndose gastado 320 boletos entre pasajes entero y medio pasaje; los primeros cuestan S/. 3 y los últimos S/. 1,60. Además el número de universitarios supera al número de niños en 20 y tanto los niños como los universitarios son los únicos que pagan medio pasaje. Son ciertas: I. Suponiendo que los niños no pagan; el microbusero estaría perdiendo S/. 56 II. Hay 60 universitarios. III. Se gastó 240 boletos en pasaje entero. A) I y II B) II y III C) Todas D) Solo I E) Solo II Método del rectángulo En este tipo de problemas participan dos cantidades excluyentes, que se comparan en 2 oportunidades originándose en un caso ganancia y en otro pérdida. Para poder aplicar este método, el problema debe presentar las siguientes características: Deben participar dos cantidades excluyentes, una mayor que la otra, y deben compararse entre sí las dos cantidades, originándose en un caso, un sobrante (o ganancia) y en otro, un faltante (o pérdida). Ejemplo: Para ganar S/. 200 en la rifa de una grabadora se imprimieron 640 boletos, sin embargo solo se vendieron 210, y se originó una pérdida de S/. 15. Determina el valor de la grabadora. Resolución: Usamos el método del rectángulo: boletos pérdida 640 +200 (–) (–) 210 –15 Precio de cada boleto  200 15 215 0,5 640 210 430       Precio de la grabadora = 640 x 0,5 – 200 = S/. 120 Ejercicios: 1. Para ganar S/.30 en la rifa de una pelota se hicieron 80 boletos, pero no se vendieron más que 70, originándose una pérdida de S/.20. ¿Cuánto valía la pelota? Rpta. S/.370 2. Los alumnos del profesor “Lucho” deciden obsequiarle una Laptop. Si cada uno diera S/.100, faltarían S/.320; pero si cada uno da S/.120, sobrarían S/.120. ¿Cuánto cuesta la Laptop? Rpta. La Laptop cuesta S/.2 520 3. Un campesino pensaba así: “Si vendo todos los sacos de arroz a S/.35 cada uno, perdería S/.120, pero si los vendo a S/.42 cada uno, ganaría S/.90. ¿Cuál es el costo de todos los sacos de arroz? A) S/.1 800 B) S/.1 400 C) S/.1 200 D) S/.1 170 E) S/.1 320 4. Pepe tiene tanto dinero como para comprar 24 chocolates y aún le sobra S/.15, pero si quisiera comprar 36 chocolates, le faltaría S/.9. ¿Cuánto dinero tiene Pepe? A) S/.56 B) S/.52 C) S/.48 D) S/.72 E) S/.63 5. Si una señora compra 3 macetas con el dinero que tiene, le sobraría S/.12. Entonces, decide comprar una maceta más y le sobra solo S/.4. ¿Cuánto tenía la señora? A) S/.32 B) S/.30 C) S/.28 D) S/.36 E) S/.42 6. Un grupo de amigos va al estadio y sucede lo siguiente: para entrar todos a oriente (40 soles la entrada) faltaría dinero para 3 de ellos, pero para entrar todos a popular (30 soles la entrada) tendrían para una entrada más. ¿Cuántos amigos son? A) 14 B) 15 C) 16 D) 17 E) 18 Regla de la con junta Esta regla consiste en formar con los datos una serie de equivalencias con la salvedad de que en una misma columna no deben existir dos datos de la misma especie. Luego se multiplican ordenadamente estas equivalencias y se halla el valor de la incógnita. Ejemplo: Por una sandía me dan 4 manzanas, por 2 manzanas recibo 3 mangos. ¿Cuántas sandías me darán por 24 mangos?
  • 8. Reforzamiento – Pre – Matemática – 2017 Lic. Luis Cañedo Cortez Página 8 Resolución: Rpta.: Me darán 4 sandías. Ejercicios. 1. Sabiendo que 6 kilogramos de sandía cuesta lo mismo que 4 kilogramos de papaya, 3 kilogramos de papaya valen lo mismo que 2 kilogramos de plátanos; 5 kilogramos de plátanos cuestan 18 soles. ¿Cuánto costarán 10 kilogramos de sandía? A) 24 soles B) 20 soles C) 18 soles D) 22 soles E) 16 soles 2. En una feria, por 8 melocotones dan 5 peras, por cada 10 peras dan 3 piñas; por cada 4 piñas dan 1 docena de naranjas; si 5 naranjas cuestan S/.16. ¿Cuánto pagará por 12 melocotones? Rpta. S/.21,60 3. En la librería “Joselito” 14 lapiceros cuestan lo mismo que 6 plumones, 8 plumones lo mismo que 5 motas, 3 motas cuestan S/.35. ¿Cuánto tengo que gastar para adquirir 16 lapiceros? Rpta. S/.50 4. Un carpintero cobra lo mismo por confeccionar 4 sillas o 3 sillones, también cobra lo mismo por confeccionar 9 sillones o 2 mesas. Si 3 mesas cuestan S/.450, ¿cuánto cuestan 6 sillas? A) S/.100 B) S/.120 C) S/.220 D) S/.150 E) S/.180 Geometría Ángulo Bisectriz de un ángulo. OM : Bisectriz Clasificación de los ángulos. Ángulos Convexos Áng. No-Convexo CLASIFICACIÓN DE LOS ÁNGULOS CONVEXOS a) Según sus Medidas : a.1 ∢ Agudo a.2 ∢ Recto a.3 ∢Obtuso a.4 ∢Llano a.5 ∢ De una Vuelta b) Según sus lados y la suma de sus medidas. b.1 ∢ Adyacentes b.2 ∢ Consecutivos A O B º Notación: ∢AOB : Ángulo AOB ó  AOB : Ángulo AOB m∢AOB : Medida del ángulo AOB → m∢AOB = º M A B ° ° O O sea : m∢AOM = m∢MOB = º ° ° 0º < º < 180º 180º < º < 360º ° ° 0° < ° < 90° ° = 90° º º 90° < º < 180° º = 180° ° º = 360° º º º º º º º
  • 9. Reforzamiento – Pre – Matemática – 2017 Lic. Luis Cañedo Cortez Página 9 b.3 opuestos por el vértice b.3 ∢ Complementarios Cº = 90º - º b.4 ∢ Suplementarios Sº = 180º - º Ejercicios: 1. AOB y BOC son consecutivos; m AOC = 80° y m AOB = 48°. Si OMes bisectriz del AOC, calcular: m MOB. a) 6° b) 8° c) 10° d) 12° 2. EL doble del complemento de un ángulo equivale al complemento de la mitad del ángulo. Hallar dicho ángulo. a) 60° b) 30° c) 40° d) 80° 3. Hallar “α”, si: m POQ – m QOR = 64°. (OM: Bisectriz del POR) a) 32° b) 30° c) 36° d) 42° 4. Calcular “x” a) 40º b) 70º c) 100º d) 110º e) 150º 5. Se tiene un ángulo en el cual la suma de su complemento y su suplemento es tres veces el valor del ángulo, calcular el suplemento del complemento del ángulo en mención. a) 120º b) 124º c) 144º d) 126º e) 108º 6. Reducir la siguiente expresión: E = º162º36 º54 SSSCCC SSSSSCCCCC  a) 3 1 b) 2 1 c) 3 d) 2 e) 1 7. Si a un ángulo le restamos su suplemento resulta ser el triple de su complemento, calcular el complemento del ángulo. a) 45º b) 36º c) 54º d) 90º e) 72º 8. Se tiene los ángulos consecutivos AOB, BOC y COD, de manera que: m AOB m BOC m COD 3 4 5   y m AOD= 48º Calcular: mCOD - mAOB a) 4º b) 8º c) 12º d) 16º e) 18º 9. Calcular : SSSCCCº, si : CCCSSSSCCº = 40º a) 10º b) 20ºc) 40º d) 140º e) 70º 10. Sean los ángulos consecutivos AOB y BOC, se trazan las bisectrices OM del ∠AOC y ON del ∠BOC. Si el ∠MON mide 20º. Calcule: m ∠AOB a) 30º b) 32º c) 36º d) 40º e) 45º Ángulos formados por dos rectas paralelas y una secante Si: 21 L//L es intersectada por la transversal L . Ángulos Alternos (iguales) a) Internos:  =  ;  =  b) Externos:  =  ;  =  Ángulos correspondientes (iguales)  =  ;  =  ;  =  ;  =  Ángulos conjugados (suplementarios) 1. Internos:  +  = 180° ;  +  = 180° 2. Externos:  +  = 180° ;  +  = 180° Propiedades: 1. Si: 21 L//L Se cumple: x =  +  º º º + º = 90° mº nº mº + nº = 180° α θ α = θ α M Q O P R º º º º X° 40º           x
  • 10. Reforzamiento – Pre – Matemática – 2017 Lic. Luis Cañedo Cortez Página 10 En general: ( 21 L//L ) Se cumple:  +  +  +  =  +  +  2. Si: 21 L//L Se cumple  +  +  = 360° 3. Si: 21 L//L Se cumple:  +  +  +  +  = 180° x =  +  +  +  Ejercicios: 1. En la figura: L1 // L2. Calcular el valor de:      A) 1 B) 2 C) 3 D) 4 E) 5 2. En la figura: DE//AB ; calcular x. A) 110° B) 120° C) 130° D) 140° E) 150° 3. Calcule “x”, 1 2L // L a) 18º b) 36º c) 12º d) 24º e) 32º 4. Si: 1 2L // L , calcule “x”. a) 70º b) 48º c) 60º d) 40º e) 72º 5. 6. En la figura 21 L//L , EFCEyBACB  . Hallar la mDFE. A) 10° B) 15° C) 20° D) 35° E) N.A. 7. Hallar x, si L1 // L2 A) 38º B) 43º C) 50º D) 53º E) 57º 8. Hallar , si L1 // L2 A) 100º B) 110º C) 120º D) 130º E) 140º               x A B C D E x°20° 50° L1 L2    80° C A B D F L2 L1    x 20° E 75° 18° 10° 20° x L1 L2 3   L2L1 100º
  • 11. Reforzamiento – Pre – Matemática – 2017 Lic. Luis Cañedo Cortez Página 11  C BA b a c  Razones trigonométricas de un ángulo agudo de triángulo rectángulo Sea el triángulo rectángulo ABC recto en B. Definimos con respecto a : Seno de   b a H CO sen  Coseno de   b c H CA cos  Tangente de   tan CO a CA c    Cotangente de   cot CA c CO a    Secante de   c b CA H sec  Cosecante de   a b CO H csc  Por ejemplo: 3 1 sen   csc = 3 Propiedad: sen α x csc α = 1 cos α x sec α = 1 tan α x cot α = 1 Teorema de Pitágoras. En todo triángulo rectángulo se cumple: “La suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa” a2 + c2 = b2 Propiedad de la tangente y cotangente tan α = 𝑠𝑒𝑛 𝛼 cos 𝛼 ; cot α = cos 𝛼 𝑠𝑒𝑛 𝛼 Ángulo mitad: Actividad: 1. Se sabe que tanx = 0,333… Calcular: R= sen2x – cos2x + cot2x a) 22/9 b) 8,2 3/8 d) 2,8 e) 1 2. Si: sec θ = 1,25 ; además: Csc β = 4cot θ + csc θ Calcular: cot β a) √3 b) 2√3 c) 3√3 d) 4√3 e) 5√3 3. Se tiene un triángulo rectángulo ABC. Calcular: b b c P senA senC tgA a c a    a) a+b+c b) 2a c) b d) 2c e) 3 4. En un triángulo rectángulo ABC, recto en "B", se cumple que: 3tanA = 2cscC. Calcular: M = √5 tgA + 6secC a) 5 b) 7 c) 9 d) 11 e) 13 5. Sabiendo que: 23+tg = 43; donde "" es un ángulo agudo, calcular: C = 2sec2 + 10sen2 a) 17 b) 19 c) 21 d) 25 e) 29 6. En el triángulo ABC, recto en “B”, se sabe que: 5 Cos A = 3; hallar el valor de:  12 tan A cot A R 5secA   a) 6 b) 3 c) 5 d) 9 e) 12 7. En un triángulo rectángulo ABC (C = 90°) se verifica que: a b 7 a b 5    Hallar: E = SenA + SenB a) 37 7 b) 5√37 37 c) 7√37 71 d) 7√37 37 e) 5 37 8. Si:   2sen2 cos cos     ; hallar: N=Cosθ+Cotθ a) 5√3 4 b) 5√15 4 c) 2√3 3 d) 3√3 2 e) 5√3 2 9. Si:   3cot8 tan tan     ; hallar: N= sen2θ + Tan2θ a) 15 b) 4/15 c) 15/4 d) 3/13 e) 13/3  C BA b a c  Elementos: - a: cateto opuesto al ángulo  - c: cateto adyacente al ángulo . - b: hipotenusa I N V E R S A S inversas tan 𝜃 2 = csc θ – cot θ cot 𝜃 2 = csc θ + cot θ
  • 12. Reforzamiento – Pre – Matemática – 2017 Lic. Luis Cañedo Cortez Página 12 10. Sabiendo que: 2 2 2 2 a b sen a b     El valor de: T = ab(sec θ – tan θ), es: a) 0 b) a2 c) b2 d) – a2 e) – b2 11. Si A y B son los ángulos agudos de un triángulo rectángulo. Simplíficar: senA cosA T cscB cscA cscB secB        A) 4ab B) 3bc C) 2 D) a E) b 12. Del triángulo rectángulo mostrado, calcular la tangente del mayor ángulo agudo: A) 2,4 B) 3,5 C) 5,2 D) 6,5 E) 60 13. Hallar: E = 2 cot 𝜃 2 – 3 a) √3 b) 2 √3 c) √5 d) √7 e) 2 √5 14. A partir del gráfico mostrado, calcular; N = tg 𝜃 2 + cot 𝜃 2 A) 4 B) 2,5 C) 8 D) 10 E) 12 Propiedades de las razones trigonométricas.  Reciprocas.  Complementario. sen = cos tg = ctg sec = csc Ejercicios de aplicación. 1. Si : tan 3x . cot(x + 40°) = 1. Calcular : Cos 3x a) 1 b) ½ c) 3 d) 3 /2 e) 3/5 2. Hallar “x” si : cos(2x – 10°) sec(x + 30°) = 1 a) 10° b) 20° c) 30° d) 40° e) 50° 3. Si: sen 7x sec 2x = 1. Calcular: E = tg2 6x + tg(x + 42º - y) . tg(3x + y + 8°) a) 1 b) 3 c) 4 d) 5 e) 6 4. Determine “x” : sec(2x - 8) = sen 40° csc 40° + º75ctg º15tg a) 17° b) 20° c) 28° d) 30° e) 34° 5. Calcular: º50csc º40sec3 º70ctg º20tg2 º80cos º10sen E  a) 1 b) 2 c) 0 d) -1 e) -2 sen . csc = 1 cos . sec = 1 tg . ctg = 1 Siempre y cuando:  =  Siempre y cuando:  +  = 90° (Complementarios )
  • 13. Reforzamiento – Pre – Matemática – 2017 Lic. Luis Cañedo Cortez Página 13 Razones trigonométricas de ángulos notables. Estas razones se obtienen a partir de triángulos rectángulos notables donde la proporción entre sus lados y la medida de sus ángulos interiores es conocida. Triángulos notables. Triángulos aproximados. Ejercicios de aplicación. 1. Calcular: E = (sen30º + cos60º)tg37º a) 1 b) 2 c) ¼ d) 3/4 e) 4/3 2. Determine el valor de “m” para que “x” sea 30º. 1m 1m x2cos    a) 2 b) 3 c) 4 d) 5 e) 6 3. Del gráfico hallar: ctg a) 1,6 b) 1,7 c) 0,4 d) 0,6 e) 1,4 4. Calcular: E = (sec245º + tg45º) ctg37º - 2cos60º a) 0 b) 1 c) 2 d) 3 e) 4 5. Calcular: “x” 3xsec53º - tg45º = sec60º(sec45º + sen45º)csc30º a) 1 b) 2 c) 3 d) 4 e) 5 6. Calcular: E = (tg60º + sec30º - sen60º)sec60º a) 25/12 b) 25/24 c) 49/12 d) 49/24 e) 7/18 7. Calcular: º45sen º30cosº37senº60secº30tg E 2   a) 5 3 b) 5 311 c) 5 33 d) 3 35 e) 5 32 a a 45 45 a 2a 60º 30º a 5a 3a 37º 53º 4a 25a 7a 16º 74º 24a a 8º 82º 7a x + 3 2x + 1 5x - 3 45º 