BLOQUE 1: FARMACOLOGÍA GENERAL
TEMA 3. BASES FARMACOCINÉTICAS. PASO DE FÁRMACOS A TRAVÉS DE
MEMBRANAS. ABSORCIÓN. DISTRIBUCIÓN. ELIMINACIÓN. NORMAS GENERALES PARA LA
ADMINISTRACIÓN Y DOSIFICACIÓN DE FÁRMACOS.
TEMA 3. BASES FARMACOCINÉTICAS.
1. Absorción
• Paso de fármacos a través de membranas biológicas
2. Distribución
3. Metabolismo y Excreción (Eliminación)
4. Principios generales para establecer las pautas terapéuticas
• Dosis e intervalo de administración
BIBLIOGRAFÍA:
- Farmacología en Enfermería. 2ª ed. Ed. Médica Panamericana. Madrid (2020)
PROCESOS FARMACOCINÉTICOS
¿Por qué la farmacocinética de un medicamento es importante?
• La acción de cualquier fármaco requiere que haya una concentración adecuada en el
órgano diana. Para la mayoría de los fármacos el efecto se relaciona con el tiempo
entre el aumento y la disminución de esa concentración.
Definición: La farmacocinética es lo que “el organismo hace sobre el fármaco”
Dosis-Concentración
SIEMPRE EXISTE UNA RELACIÓN ENTRE LA CONCENTRACIÓN
PLASMÁTICA Y EL EFECTO TERAPÉUTICO
PROCESOS FARMACOCINÉTICOS
Procesos LADME: El conjunto de procesos que caracterizan la evolución temporal de un
medicamento, tras ser administrado, en determinadas condiciones y bajo una vía de
administración específica.
L. Liberación: “salida” del fármaco de la forma farmacéutica que lo transporta
A. Absorción: movimiento desde el sitio de administración hasta la circulación
sanguínea
D. Distribución: transporte desde el espacio intravascular hasta los tejidos y células
corporales
M. Metabolismo: transformación química en compuestos más fáciles de eliminar
E. Eliminación: excreción de un compuesto, metabolito o fármaco no cambiado, por
un proceso renal, biliar o pulmonar
Metabolismo local
LUGAR DE
ADMINISTRACIÓN
absorción
Medicamento
F
RIÑÓN
Excreción
(orina)
F
Met
HÍGADO
F
F
Met
Metabolismo hepático
TEJIDO 1
F
Met
Metabolismo local
TEJIDO 2
F
Met
Metabolismo local
SANGRE
distribución
F, Met
TEJIDO DIANA
F
Met
ACCIÓN
EFECTO
VÍA DE ADMINISTRACIÓN
DOSIS
FORMA FARMACÉUTICA
liberación
Figura tomada de: Fundamentos de Farmacología Básica y Clínica. 2ª ed. Ed. Médica Panamericana (2013)
CICLO INTRAORGÁNICO:
ABSORCIÓN
La ABSORCIÓN de un fármaco:
• implica el paso de las moléculas del fármaco a través de una o más
membranas biológicas, antes de llegar a la circulación sanguínea.
• El tiempo que tarda en conseguirlo y la concentración que alcanza depende
tanto de:
• las características físico-químicas del fármaco,
• la vía de administración utilizada.
La absorción, la distribución, el metabolismo y la excreción de fármacos ocurre siempre
atravesando membranas celulares
PASO DE FÁRMACOS A TRAVÉS DE MEMBRANAS BIOLÓGICAS:
Los fármacos generalmente pasan a
través de las células en lugar de
entre las células, de tal manera que
la membrana celular es la barrera
Puede ser por:
1. TRANSPORTE no mediado por proteínas
• Se realizan a favor de un gradiente de concentración
• Puede ser:
 Filtración a través de poros (importante en la absorción de fármacos por v.
intramuscular o subcutánea)
 Difusión pasiva o Difusión pasiva no iónica (Ley de Fick): la cantidad de
fármaco que atraviesa la membrana será tanto mayor cuanto:
1. Mayor sea el gradiente de concentración
2. Menor sea el tamaño molecular
3. Mayor sea la liposolubilidad de la molécula
DIFUSIÓN PASIVA NO-IÓNICA:
Factores determinantes:
1. Tamaño (peso molecular)
2. Características de la forma farmacéutica: condiciona la velocidad de liberación del
fármaco
3. Características del lugar de absorción (superficie y espesor de la membrana, flujo
sanguíneo). Dependen de la vía de administración
Para más detalle ver Capítulo 3: “NORMAS GENERALES PARA LA ADMINISTRACIÓN
Y DOSIFICACIÓN DE FÁRMACOS”
VÍA ENTERAL:
 Vía Oral: Es la vía más fisiológica, la más utilizada por su seguridad y bajo coste.
Factores que influyen:
• El pH del tubo digestivo.
• La velocidad de vaciamiento gástrico y la motilidad intestinal,
• La presencia de alimentos
• Metabolismo presistémico: metabolismo intestinal (flora bacteriana) y el efecto de primer paso
hepático
• Factores galénicos
 A través de sondas nasogástricas
 Vía sublingual y bucal
Factores que influyen: el pH de la saliva, la superficie de absorción y la solubilidad del fármaco. Se evita
el efecto de primer paso hepático
 Rectal
Absorción irregular, incompleta y más lenta que por vía oral
VÍA PARENTERAL
 intravenosa (i.v.)
 intramuscular (i.m.)
 subcutánea y otras vías
Factores determinantes:
• Flujo regional
• Velocidad de administración (i.v.)
• La forma farmacéutica (i.m. y subcutánea)
• Factores individuales: estados patológicos, edad
4. Factores fisiológicos y patológicos
5. Ionización (capacidad de atravesar membranas):
ecuación de Henderson-Hasselbalch
 concepto de pH y pKa
 concepto de atrapamiento iónico (acumulación del fármaco en
aquellos lugares cuyo pH sea muy diferente a su Pka)
6. Liposolubilidad
DIFUSIÓN PASIVA NO-IÓNICA (sigue):
CONCEPTO DE IONIZACIÓN:
*- Fármaco A pKa = 3 (ácido débil, AAS) se encuentran en un medio con un pH = 2, y el fármaco B pKa
= 10 (base débil, anfetamina) se encuentran en un medio con un pH = 8, calcula la fracción ionizada de
cada uno de ellos
CONCEPTO DE IONIZACIÓN: ECUACIÓN DE HANDERSON-HASSELBALCH
AH A- + H+
B + H+ BH+
• La mayoría de los medicamentos son de peso molecular pequeño y de carácter
ácido o base débil
• Los fármacos cuando se disuelven suelen estar en forma ionizada
*- Tanto más cuanto más se disuelven en pH “opuesto”
• Las barreras celulares son permeables a las formas no ionizadas. Así:
ionizada = polar = soluble en agua
no ionizada = menos polar = soluble en grasa
• La cantidad de fracción no ionizada depende del pKa del fármaco y del pH del
medio en el que se encuentre
IDEAS IMPORTANTES:
Modificaciones en el pH de la zona de absorción pueden alterar la [fracción
no ionizada].
¿Qué sucedería con el grado de ionización de un F si se administra
concomitantemente con alimentos, antiácidos o existen alteraciones en el pH de la
zona donde se inyecta?
Tomado de Rang y Dale. (2016). Farmacología
CONCEPTO DE ATRAPAMIENTO IÓNICO (sigue):
CONCEPTO DE LIPOSOLUBILIDAD (sigue):
2. TRANSPORTE mediado por proteínas:
• Es saturable y selectivo
• Los transportadores (proteínas) que utilizan los fármacos son los mismos que los
empleados por las moléculas endógenas
• Pueden ser de dos tipos:
 Difusión facilitada a favor de un gradiente de
concentración
 Transporte activo (selectivo, competitivo y
saturable), en contra de un gradiente de
concentración
•Requiere energía en forma de ATP procedente del metabolismo
celular
OTROS PROCESOS:
1. Procesos de invaginación de la membrana (endocitosis y exocitosis): algunas
moléculas se engloban en la membrana formando pequeñas vesículas
Procesos de endocitosis:
 Fagocitosis
 Pinocitosis
•Utilización de liposomas: vesículas sintéticas formadas por capas de fosfolípidos que en
su interior llevan el fármaco, pueden concentrarse en determinadas células como tumores
malignos
FARMACOCINÉTICA DEL PROCESO DE ABSORCIÓN:
El tiempo que necesita un fármaco para llegar a la sangre viene determinado por dos
parámetros farmacocinéticos:
• Ka- Constante de absorción
• ta1/2- Semivida de absorción
Biodisponibilidad:
Indica la velocidad y cantidad inalterada de fármaco que accede a la circulación sistémica
Tomado de Somoza, Farmacología para enfermería. Teoría y Casos Prácticos 2ª ed. Ed. Médica Panamericana (2020)
Vía intravenosa
Vía intramuscular
Vía oral
Vía rectal
Tiempo
Concentración
plasmática
Solución
Cápsulas
Comprimidos
Tiempo
Concentración
plasmática
A) Influencia de la vía de administración B) Influencia de la forma farmacéutica
CME CME
• La biodisponibilidad puede ser:
• absoluta
• relativa
TmaxA = TmaxB  20%
CmaxA = CmaxB  20%
Tiempo
Concentración
plasmática
CME
A
B
Tiempo
Concentración
plasmática
CME
A
B
A) Biodiponibilidad B) Bioequivalencia
ABCA = ABCB
ABCA = ABCB  20%
Tomado de Brenner G.M. y Stevens C.W. (2019).
Farmacología Básica. 5º ed. Ed. Elsevier
Tomado de Somoza, Farmacología para enfermería. Teoría y Casos Prácticos 2ª ed. Ed. Médica Panamericana (2020)
DISTRIBUCIÓN DE FÁRMACOS
La distribución de un fármaco está determinada por:
1. Las características fisicoquímicas del fármaco (liposolubilidad, PM)
2. El grado de fijación del fármaco a las proteínas plasmáticas
3. El flujo sanguíneo que llega a los tejidos
 La superficie capilar en un tejido concreto y la distancia del capilar a las
células
4. El pH de la zona
 El tropismo del fármaco hacia tejidos concretos y su unión a las proteínas
tisulares
5. La existencia de barreras especiales y órganos de acceso restringido
• Barrera hematoencefálica (BHE)
• Barrera placentaria
• Barrera testicular
Una vez en la sangre los fármacos se unen a proteínas plasmáticas (cada fármaco
lo hace en un determinado porcentaje).
Proteínas plasmáticas: F + Proteína FP + F
I. Albúmina (se unen los fármacos ácidos, la mayoría)
II. Alfa1-glicoproteína (se unen los fármacos básicos y neutros) (1g/L, esta proteína
puede aumentar hasta 100 veces durante las reacciones de fase aguda y en los
procesos inflamatorios crónicos)
III. Lipoproteínas (transporte de fármacos hidrófobos)
IV. Eritrocitos (unidos a la hemoglobina)
2. UNIÓN DEL FÁRMACO A LAS PROTEÍNAS PLASMÁTICAS
La fracción unida a proteínas es farmacológicamente inactiva
La Unión a proteínas plasmáticas de un fármaco determina:
1. El periodo de latencia
2. La intensidad del efecto farmacológico
3. La duración del efecto farmacológico
4. La capacidad para eliminarse:
• Los complejos proteína-fármaco en el plasma pueden actuar como
reservorio del fármaco … condicionando la velocidad de eliminación
IDEAS IMPORTANTES:
Con fármacos que se unan más de un 99% a proteínas plasmáticas debemos prestar
especial precaución:
1. Cuando se administren a la vez con fármacos con alta unión a proteínas
plasmáticas (> 99%)
 Desplazamientos e interacciones con fármacos
 fármacos con estrecho margen terapéutico
2. Cuando se administren en situaciones patológicas que conllevan
hipoproteinemia
El fármaco entra desde la sangre a los tejidos
 Flujo sanguíneo regional y gasto cardiaco.
 Estructura de los capilares (longitud, diámetro y número de vasos)
Tejidos menos irrigados (piel, hueso, músculo)  menos F;
Tejidos más irrigados (corazón, hígado)  más F
3. FLUJO SANGUÍNEO
Alta densidad de capilares en
tejidos muy irrigados:
• corazón
• riñón
• hígado
• glándulas
Densidad media de capilares
en tejidos menos irrigados
• músculo esquelético
Baja densidad de capilares
en tejidos poco irrigados
• hueso
• tejido adiposo
capilar fármaco
capilar
Figura tomada de: Fundamentos de Farmacología Básica y Clínica. Editorial Universitaria Ramón Areces (2005)
El fármaco debe salir desde los tejidos hacia la sangre
 Atrapamiento iónico
 Acumulación en determinados tejidos o tropismo
4. pH DE LA ZONA
¿HASTA DONDE SE DISTRIBUYEN LOS FÁRMACOS?
Vd (3-5 L)  Distribución de F en plasma (F con alto PM o alta unión a proteínas plasmáticas, muy pocos)
Vd (5-10 L)  Distribución de F en plasma y líquido extracelular (F muy hidrófilos)
Vd (12-40 L) Distribución de F en plasma, líquido extracelular e intracelular (F lipófilos, mayoría)
Vd (>40 L)  F se acumulan en tejidos (F muy lipófilos)
V. agua corporal total
Plasma
V. Intersticial
42 L
27 L
15 L
12 L
3 L
V. Plasmático
V. Intersticial
V. Extracelular
V. Intracelular
V. Intracelular
Tomado de Somoza, Farmacología para enfermería. Teoría y Casos Prácticos 2ª ed. Ed. Médica Panamericana (2020)
El volumen de distribución (Vd) de un fármaco es el volumen de líquido en el que está
disuelto cuando se ha alcanzado el equilibrio de distribución
El Vd permite calcular hasta dónde se distribuye y a qué tejidos llega
Su valor depende de:
 Hidrosolubilidad o liposolubilidad del fármaco
 Su afinidad por las proteínas plasmáticas o tisulares
 Perfusión tisular …. MAYOR REDISTRIBUCIÓN
 Existencia de barreras especiales
Dosis 300 mg
Csol= 75 mg/l
Volumen aparente = 4 l
Distribución uniforme
Dosis 300 mg
Csol= 1 mg/l
Volumen aparente = 300 l
Distribución no uniforme
acumulación
VOLUMEN APARENTE DE DISTRIBUCIÓN
Vd = Dosis/Co
 Alta unión a proteínas plasmáticas y fármacos hidrosolubles Bajo Vd
 Baja unión a proteínas plasmáticas y fármacos muy liposolubles Alto Vd
Figura tomada de: Fundamentos de Farmacología Básica y Clínica. 2ª ed. Ed. Médica Panamericana (2013)
Se administran por vía oral 300 mg de un fármaco A. La Co que se obtiene es de 1
mg/L. Calcule su volumen de distribución. Explique razonadamente el resultado.
¿Qué efecto tiene la ionización de un fármaco en su distribución en el organismo?

-TEMA_3-_Bases_farmacocineticas._Absorcion_y_Distribucion (1).pdf

  • 1.
    BLOQUE 1: FARMACOLOGÍAGENERAL TEMA 3. BASES FARMACOCINÉTICAS. PASO DE FÁRMACOS A TRAVÉS DE MEMBRANAS. ABSORCIÓN. DISTRIBUCIÓN. ELIMINACIÓN. NORMAS GENERALES PARA LA ADMINISTRACIÓN Y DOSIFICACIÓN DE FÁRMACOS.
  • 2.
    TEMA 3. BASESFARMACOCINÉTICAS. 1. Absorción • Paso de fármacos a través de membranas biológicas 2. Distribución 3. Metabolismo y Excreción (Eliminación) 4. Principios generales para establecer las pautas terapéuticas • Dosis e intervalo de administración BIBLIOGRAFÍA: - Farmacología en Enfermería. 2ª ed. Ed. Médica Panamericana. Madrid (2020)
  • 3.
    PROCESOS FARMACOCINÉTICOS ¿Por quéla farmacocinética de un medicamento es importante? • La acción de cualquier fármaco requiere que haya una concentración adecuada en el órgano diana. Para la mayoría de los fármacos el efecto se relaciona con el tiempo entre el aumento y la disminución de esa concentración. Definición: La farmacocinética es lo que “el organismo hace sobre el fármaco” Dosis-Concentración
  • 4.
    SIEMPRE EXISTE UNARELACIÓN ENTRE LA CONCENTRACIÓN PLASMÁTICA Y EL EFECTO TERAPÉUTICO
  • 5.
    PROCESOS FARMACOCINÉTICOS Procesos LADME:El conjunto de procesos que caracterizan la evolución temporal de un medicamento, tras ser administrado, en determinadas condiciones y bajo una vía de administración específica. L. Liberación: “salida” del fármaco de la forma farmacéutica que lo transporta A. Absorción: movimiento desde el sitio de administración hasta la circulación sanguínea D. Distribución: transporte desde el espacio intravascular hasta los tejidos y células corporales M. Metabolismo: transformación química en compuestos más fáciles de eliminar E. Eliminación: excreción de un compuesto, metabolito o fármaco no cambiado, por un proceso renal, biliar o pulmonar
  • 6.
    Metabolismo local LUGAR DE ADMINISTRACIÓN absorción Medicamento F RIÑÓN Excreción (orina) F Met HÍGADO F F Met Metabolismohepático TEJIDO 1 F Met Metabolismo local TEJIDO 2 F Met Metabolismo local SANGRE distribución F, Met TEJIDO DIANA F Met ACCIÓN EFECTO VÍA DE ADMINISTRACIÓN DOSIS FORMA FARMACÉUTICA liberación Figura tomada de: Fundamentos de Farmacología Básica y Clínica. 2ª ed. Ed. Médica Panamericana (2013) CICLO INTRAORGÁNICO:
  • 7.
    ABSORCIÓN La ABSORCIÓN deun fármaco: • implica el paso de las moléculas del fármaco a través de una o más membranas biológicas, antes de llegar a la circulación sanguínea. • El tiempo que tarda en conseguirlo y la concentración que alcanza depende tanto de: • las características físico-químicas del fármaco, • la vía de administración utilizada.
  • 8.
    La absorción, ladistribución, el metabolismo y la excreción de fármacos ocurre siempre atravesando membranas celulares PASO DE FÁRMACOS A TRAVÉS DE MEMBRANAS BIOLÓGICAS: Los fármacos generalmente pasan a través de las células en lugar de entre las células, de tal manera que la membrana celular es la barrera
  • 9.
  • 10.
    1. TRANSPORTE nomediado por proteínas • Se realizan a favor de un gradiente de concentración • Puede ser:  Filtración a través de poros (importante en la absorción de fármacos por v. intramuscular o subcutánea)  Difusión pasiva o Difusión pasiva no iónica (Ley de Fick): la cantidad de fármaco que atraviesa la membrana será tanto mayor cuanto: 1. Mayor sea el gradiente de concentración 2. Menor sea el tamaño molecular 3. Mayor sea la liposolubilidad de la molécula
  • 11.
    DIFUSIÓN PASIVA NO-IÓNICA: Factoresdeterminantes: 1. Tamaño (peso molecular) 2. Características de la forma farmacéutica: condiciona la velocidad de liberación del fármaco 3. Características del lugar de absorción (superficie y espesor de la membrana, flujo sanguíneo). Dependen de la vía de administración
  • 12.
    Para más detallever Capítulo 3: “NORMAS GENERALES PARA LA ADMINISTRACIÓN Y DOSIFICACIÓN DE FÁRMACOS”
  • 13.
    VÍA ENTERAL:  VíaOral: Es la vía más fisiológica, la más utilizada por su seguridad y bajo coste. Factores que influyen: • El pH del tubo digestivo. • La velocidad de vaciamiento gástrico y la motilidad intestinal, • La presencia de alimentos • Metabolismo presistémico: metabolismo intestinal (flora bacteriana) y el efecto de primer paso hepático • Factores galénicos  A través de sondas nasogástricas  Vía sublingual y bucal Factores que influyen: el pH de la saliva, la superficie de absorción y la solubilidad del fármaco. Se evita el efecto de primer paso hepático  Rectal Absorción irregular, incompleta y más lenta que por vía oral
  • 14.
    VÍA PARENTERAL  intravenosa(i.v.)  intramuscular (i.m.)  subcutánea y otras vías Factores determinantes: • Flujo regional • Velocidad de administración (i.v.) • La forma farmacéutica (i.m. y subcutánea) • Factores individuales: estados patológicos, edad
  • 15.
    4. Factores fisiológicosy patológicos 5. Ionización (capacidad de atravesar membranas): ecuación de Henderson-Hasselbalch  concepto de pH y pKa  concepto de atrapamiento iónico (acumulación del fármaco en aquellos lugares cuyo pH sea muy diferente a su Pka) 6. Liposolubilidad DIFUSIÓN PASIVA NO-IÓNICA (sigue):
  • 16.
  • 17.
    *- Fármaco ApKa = 3 (ácido débil, AAS) se encuentran en un medio con un pH = 2, y el fármaco B pKa = 10 (base débil, anfetamina) se encuentran en un medio con un pH = 8, calcula la fracción ionizada de cada uno de ellos CONCEPTO DE IONIZACIÓN: ECUACIÓN DE HANDERSON-HASSELBALCH AH A- + H+ B + H+ BH+
  • 18.
    • La mayoríade los medicamentos son de peso molecular pequeño y de carácter ácido o base débil • Los fármacos cuando se disuelven suelen estar en forma ionizada *- Tanto más cuanto más se disuelven en pH “opuesto” • Las barreras celulares son permeables a las formas no ionizadas. Así: ionizada = polar = soluble en agua no ionizada = menos polar = soluble en grasa • La cantidad de fracción no ionizada depende del pKa del fármaco y del pH del medio en el que se encuentre IDEAS IMPORTANTES:
  • 19.
    Modificaciones en elpH de la zona de absorción pueden alterar la [fracción no ionizada]. ¿Qué sucedería con el grado de ionización de un F si se administra concomitantemente con alimentos, antiácidos o existen alteraciones en el pH de la zona donde se inyecta?
  • 20.
    Tomado de Rangy Dale. (2016). Farmacología CONCEPTO DE ATRAPAMIENTO IÓNICO (sigue):
  • 21.
  • 22.
    2. TRANSPORTE mediadopor proteínas: • Es saturable y selectivo • Los transportadores (proteínas) que utilizan los fármacos son los mismos que los empleados por las moléculas endógenas • Pueden ser de dos tipos:  Difusión facilitada a favor de un gradiente de concentración  Transporte activo (selectivo, competitivo y saturable), en contra de un gradiente de concentración •Requiere energía en forma de ATP procedente del metabolismo celular
  • 23.
    OTROS PROCESOS: 1. Procesosde invaginación de la membrana (endocitosis y exocitosis): algunas moléculas se engloban en la membrana formando pequeñas vesículas
  • 24.
    Procesos de endocitosis: Fagocitosis  Pinocitosis
  • 25.
    •Utilización de liposomas:vesículas sintéticas formadas por capas de fosfolípidos que en su interior llevan el fármaco, pueden concentrarse en determinadas células como tumores malignos
  • 26.
    FARMACOCINÉTICA DEL PROCESODE ABSORCIÓN: El tiempo que necesita un fármaco para llegar a la sangre viene determinado por dos parámetros farmacocinéticos: • Ka- Constante de absorción • ta1/2- Semivida de absorción
  • 27.
    Biodisponibilidad: Indica la velocidady cantidad inalterada de fármaco que accede a la circulación sistémica Tomado de Somoza, Farmacología para enfermería. Teoría y Casos Prácticos 2ª ed. Ed. Médica Panamericana (2020) Vía intravenosa Vía intramuscular Vía oral Vía rectal Tiempo Concentración plasmática Solución Cápsulas Comprimidos Tiempo Concentración plasmática A) Influencia de la vía de administración B) Influencia de la forma farmacéutica CME CME
  • 28.
    • La biodisponibilidadpuede ser: • absoluta • relativa TmaxA = TmaxB  20% CmaxA = CmaxB  20% Tiempo Concentración plasmática CME A B Tiempo Concentración plasmática CME A B A) Biodiponibilidad B) Bioequivalencia ABCA = ABCB ABCA = ABCB  20% Tomado de Brenner G.M. y Stevens C.W. (2019). Farmacología Básica. 5º ed. Ed. Elsevier Tomado de Somoza, Farmacología para enfermería. Teoría y Casos Prácticos 2ª ed. Ed. Médica Panamericana (2020)
  • 29.
  • 30.
    La distribución deun fármaco está determinada por: 1. Las características fisicoquímicas del fármaco (liposolubilidad, PM) 2. El grado de fijación del fármaco a las proteínas plasmáticas 3. El flujo sanguíneo que llega a los tejidos  La superficie capilar en un tejido concreto y la distancia del capilar a las células 4. El pH de la zona  El tropismo del fármaco hacia tejidos concretos y su unión a las proteínas tisulares 5. La existencia de barreras especiales y órganos de acceso restringido • Barrera hematoencefálica (BHE) • Barrera placentaria • Barrera testicular
  • 31.
    Una vez enla sangre los fármacos se unen a proteínas plasmáticas (cada fármaco lo hace en un determinado porcentaje). Proteínas plasmáticas: F + Proteína FP + F I. Albúmina (se unen los fármacos ácidos, la mayoría) II. Alfa1-glicoproteína (se unen los fármacos básicos y neutros) (1g/L, esta proteína puede aumentar hasta 100 veces durante las reacciones de fase aguda y en los procesos inflamatorios crónicos) III. Lipoproteínas (transporte de fármacos hidrófobos) IV. Eritrocitos (unidos a la hemoglobina) 2. UNIÓN DEL FÁRMACO A LAS PROTEÍNAS PLASMÁTICAS
  • 32.
    La fracción unidaa proteínas es farmacológicamente inactiva La Unión a proteínas plasmáticas de un fármaco determina: 1. El periodo de latencia 2. La intensidad del efecto farmacológico 3. La duración del efecto farmacológico 4. La capacidad para eliminarse: • Los complejos proteína-fármaco en el plasma pueden actuar como reservorio del fármaco … condicionando la velocidad de eliminación IDEAS IMPORTANTES:
  • 33.
    Con fármacos quese unan más de un 99% a proteínas plasmáticas debemos prestar especial precaución: 1. Cuando se administren a la vez con fármacos con alta unión a proteínas plasmáticas (> 99%)  Desplazamientos e interacciones con fármacos  fármacos con estrecho margen terapéutico 2. Cuando se administren en situaciones patológicas que conllevan hipoproteinemia
  • 34.
    El fármaco entradesde la sangre a los tejidos  Flujo sanguíneo regional y gasto cardiaco.  Estructura de los capilares (longitud, diámetro y número de vasos) Tejidos menos irrigados (piel, hueso, músculo)  menos F; Tejidos más irrigados (corazón, hígado)  más F 3. FLUJO SANGUÍNEO
  • 35.
    Alta densidad decapilares en tejidos muy irrigados: • corazón • riñón • hígado • glándulas Densidad media de capilares en tejidos menos irrigados • músculo esquelético Baja densidad de capilares en tejidos poco irrigados • hueso • tejido adiposo capilar fármaco capilar Figura tomada de: Fundamentos de Farmacología Básica y Clínica. Editorial Universitaria Ramón Areces (2005)
  • 36.
    El fármaco debesalir desde los tejidos hacia la sangre  Atrapamiento iónico  Acumulación en determinados tejidos o tropismo 4. pH DE LA ZONA
  • 37.
    ¿HASTA DONDE SEDISTRIBUYEN LOS FÁRMACOS? Vd (3-5 L)  Distribución de F en plasma (F con alto PM o alta unión a proteínas plasmáticas, muy pocos) Vd (5-10 L)  Distribución de F en plasma y líquido extracelular (F muy hidrófilos) Vd (12-40 L) Distribución de F en plasma, líquido extracelular e intracelular (F lipófilos, mayoría) Vd (>40 L)  F se acumulan en tejidos (F muy lipófilos) V. agua corporal total Plasma V. Intersticial 42 L 27 L 15 L 12 L 3 L V. Plasmático V. Intersticial V. Extracelular V. Intracelular V. Intracelular Tomado de Somoza, Farmacología para enfermería. Teoría y Casos Prácticos 2ª ed. Ed. Médica Panamericana (2020)
  • 38.
    El volumen dedistribución (Vd) de un fármaco es el volumen de líquido en el que está disuelto cuando se ha alcanzado el equilibrio de distribución El Vd permite calcular hasta dónde se distribuye y a qué tejidos llega Su valor depende de:  Hidrosolubilidad o liposolubilidad del fármaco  Su afinidad por las proteínas plasmáticas o tisulares  Perfusión tisular …. MAYOR REDISTRIBUCIÓN  Existencia de barreras especiales
  • 39.
    Dosis 300 mg Csol=75 mg/l Volumen aparente = 4 l Distribución uniforme Dosis 300 mg Csol= 1 mg/l Volumen aparente = 300 l Distribución no uniforme acumulación VOLUMEN APARENTE DE DISTRIBUCIÓN Vd = Dosis/Co  Alta unión a proteínas plasmáticas y fármacos hidrosolubles Bajo Vd  Baja unión a proteínas plasmáticas y fármacos muy liposolubles Alto Vd Figura tomada de: Fundamentos de Farmacología Básica y Clínica. 2ª ed. Ed. Médica Panamericana (2013)
  • 40.
    Se administran porvía oral 300 mg de un fármaco A. La Co que se obtiene es de 1 mg/L. Calcule su volumen de distribución. Explique razonadamente el resultado. ¿Qué efecto tiene la ionización de un fármaco en su distribución en el organismo?