sktime - 时间序列机器学习统一接口


一、关于 sktime

1、项目概览

sktime 是一个 Python 时间序列分析库,为多种时间序列学习任务提供统一接口。当前支持的功能包括:

  • 时间序列预测
  • 时间序列分类
  • 时间序列聚类
  • 异常/变化点检测
  • 其他相关任务

该库提供时间序列算法和兼容[scikit-learn]的工具,用于构建、调优和验证时间序列模型。


2、相关链接资源


二、功能特性

1、核心模块

模块状态资源链接
预测(Forecasting)稳定教程 · API
时间序列分类稳定教程 · API
时间序列回归稳定API
时间序列转换稳定教程 · API
异常检测成熟中模板
时间序列聚类成熟中API

2、生态系统集成

与以下库实现互操作:


三、安装配置

1、pip安装

# 基础安装
pip install sktime

# 完整功能安装
pip install sktime[all_extras]

# 按需安装特定模块
pip install sktime[forecasting]  # 仅预测相关依赖
pip install sktime[forecasting,transformations]  # 预测+转换

2、conda安装

conda install -c conda-forge sktime

# 完整功能安装
conda install -c conda-forge sktime-all-extras

四、快速入门

1、时间序列预测示例

from sktime.datasets import load_airline
from sktime.forecasting.base import ForecastingHorizon
from sktime.forecasting.theta import ThetaForecaster
from sktime.split import temporal_train_test_split
from sktime.performance_metrics.forecasting import mean_absolute_percentage_error

y = load_airline()
y_train, y_test = temporal_train_test_split(y)
fh = ForecastingHorizon(y_test.index, is_relative=False)
forecaster = ThetaForecaster(sp=12)  # monthly seasonal periodicity
forecaster.fit(y_train)
y_pred = forecaster.predict(fh)
mean_absolute_percentage_error(y_test, y_pred)
>>> 0.08661467738190656

2、时间序列分类示例

from sktime.classification.interval_based import TimeSeriesForestClassifier
from sktime.datasets import load_arrow_head
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

X, y = load_arrow_head()
X_train, X_test, y_train, y_test = train_test_split(X, y)
classifier = TimeSeriesForestClassifier()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
accuracy_score(y_test, y_pred)
>>> 0.8679245283018868

五、社区参与


伊织 xAI 2025-05-27(二)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EAI工程笔记

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值