【人工智能之大模型】详述大模型中​AWQ(Activation-aware Weight Quantization)量化的关键步骤?

【人工智能之大模型】详述大模型中​AWQ(Activation-aware Weight Quantization)量化的关键步骤?

【人工智能之大模型】详述大模型中​AWQ(Activation-aware Weight Quantization)量化的关键步骤?



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://fighting.blog.csdn.net/article/details/146701688


前言

  • AWQ(Activation-aware Weight Quantization)是一种专为大规模语言模型(LLM)设计的低比特权重量化方法,旨在在保持模型性能的同时,显著减少内存占用并加速推理过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值