إنشاء محادثات متعددة المقاطع (الدردشة) باستخدام Gemini API

باستخدام Gemini API، يمكنك إنشاء محادثات بتنسيق حر على مستوى أدوار متعدّدة. تعمل حزمة تطوير البرامج Vertex AI in Firebase SDK على تبسيط العملية من خلال إدارة حالة المحادثة، لذا لا تحتاج إلى تخزين سجلّ المحادثة بنفسك، على عكس استخدام generateContent() (أو generateContentStream()).

قبل البدء

إذا لم يسبق لك ذلك، أكمِل قراءة دليل البدء الذي يوضّح كيفية إعداد مشروعك على Firebase وربط تطبيقك بـ Firebase وإضافة حزمة تطوير البرامج (SDK) وبدء خدمة Vertex AI وإنشاء مثيل GenerativeModel.

إرسال طلب لإرسال إشعارات عبر المحادثة

لإنشاء محادثة متعددة المقاطع (مثل المحادثة)، ابدأ بإعداد المحادثة من خلال استدعاء startChat(). بعد ذلك، استخدِم رمز sendMessage() لإرسال رسالة مستخدم جديدة، مما يؤدي بدوره إلى إرفاق الرسالة والردّ بسجلّ المحادثات.

هناك خياران محتملان لـ role المرتبط بالمحتوى في محادثة:

  • user: الدور الذي يقدّم الطلبات. هذه القيمة هي القيمة التلقائية لطلبات sendMessage()، وتُلقي الدالة استثناءً في حال تم تمرير دور مختلف.

  • model: الدور الذي يقدّم الردود يمكن استخدام هذا الدور عند الاتصال بـ startChat() باستخدام history الحالي.

Swift

يمكنك الاتصال برقم startChat() وsendMessage() لإرسال رسالة إلى مستخدم جديد:

import FirebaseVertexAI

// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()

// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")

// Optionally specify existing chat history
let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat with optional chat history
let chat = model.startChat(history: history)

// To generate text output, call sendMessage and pass in the message
let response = try await chat.sendMessage("How many paws are in my house?")
print(response.text ?? "No text in response.")

Kotlin

يمكنك الاتصال برقم startChat() و sendMessage() لإرسال رسالة إلى مستخدم جديد:

بالنسبة إلى Kotlin، تكون الطرق في حزمة تطوير البرامج (SDK) هذه دوالّ معلّقة ويجب استدعاؤها من نطاق Coroutine.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")

// Initialize the chat
val chat = generativeModel.startChat(
  history = listOf(
    content(role = "user") { text("Hello, I have 2 dogs in my house.") },
    content(role = "model") { text("Great to meet you. What would you like to know?") }
  )
)

val response = chat.sendMessage("How many paws are in my house?")
print(response.text)

Java

يمكنك الاتصال برقم startChat() وsendMessage() لإرسال رسالة إلى مستخدم جديد:

بالنسبة إلى Java، تعرض الطرق في حزمة SDK هذه رمز برمجيًا هو ListenableFuture.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
        .generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder messageBuilder = new Content.Builder();
messageBuilder.setRole("user");
messageBuilder.addText("How many paws are in my house?");

Content message = messageBuilder.build();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(message);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Web

يمكنك الاتصال برقم startChat() وsendMessage() لإرسال رسالة إلى مستخدم جديد:

import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });

async function run() {
  const chat = model.startChat({
    history: [
      {
        role: "user",
        parts: [{ text: "Hello, I have 2 dogs in my house." }],
      },
      {
        role: "model",
        parts: [{ text: "Great to meet you. What would you like to know?" }],
      },
    ],
    generationConfig: {
      maxOutputTokens: 100,
    },
  });

  const msg = "How many paws are in my house?";

  const result = await chat.sendMessage(msg);

  const response = await result.response;
  const text = response.text();
  console.log(text);
}

run();

Dart

يمكنك الاتصال برقم startChat() وsendMessage() لإرسال رسالة إلى مستخدم جديد:

import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
      FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');

final chat = model.startChat();
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];

final response = await chat.sendMessage(prompt);
print(response.text);

تعرَّف على كيفية اختيار نموذج وموقع جغرافي اختياريًا مناسبَين لحالة الاستخدام والتطبيق.

عرض الردّ تدريجيًا

يُرجى التأكد من إكمال قسم قبل البدء في هذا الدليل قبل تجربة هذا العيّنة.

يمكنك تحقيق تفاعلات أسرع من خلال عدم انتظار النتيجة الكاملة من إنشاء النموذج، واستخدام البث بدلاً من ذلك للتعامل مع النتائج الجزئية. لبث الردّ، اتصل على sendMessageStream().



ما هي الإجراءات الأخرى التي يمكنك اتّخاذها؟

  • تعرَّف على كيفية احتساب الرموز المميّزة قبل إرسال طلبات طويلة إلى النموذج.
  • إعداد Cloud Storage for Firebase لكي تتمكّن من تضمين ملفات كبيرة في طلباتك المتعدّدة الوسائط والحصول على حلّ أكثر تنظيمًا لتقديم الملفات في طلباتك يمكن أن تتضمّن الملفات صورًا وملفات PDF وفيديوهات وملفات صوتية.
  • ابدأ التفكير في الاستعداد للنشر، بما في ذلك إعداد Firebase App Check لحماية Gemini API من إساءة استخدامها من قِبل عملاء غير مصرَّح لهم. يُرجى أيضًا مراجعة قائمة التحقّق من الإنتاج.

تجربة إمكانات أخرى

التعرّف على كيفية التحكّم في إنشاء المحتوى

يمكنك أيضًا تجربة الطلبات وإعدادات النماذج باستخدام Vertex AI Studio.

مزيد من المعلومات عن الطُرز المتوافقة

اطّلِع على مزيد من المعلومات عن النماذج المتاحة لحالات الاستخدام المختلفة واطلاعك على الحصص و الأسعار.


تقديم ملاحظات حول تجربتك مع Vertex AI in Firebase