আপনি একটি মিথুন মডেলকে একটি টেক্সট-অনলি প্রম্পট বা একটি মাল্টিমোডাল প্রম্পট থেকে পাঠ্য তৈরি করতে বলতে পারেন। আপনি যখন Firebase-এ Vertex AI ব্যবহার করেন, আপনি সরাসরি আপনার অ্যাপ থেকে এই অনুরোধ করতে পারেন।
মাল্টিমোডাল প্রম্পটগুলিতে একাধিক ধরণের ইনপুট অন্তর্ভুক্ত থাকতে পারে (যেমন চিত্র সহ পাঠ্য, পিডিএফ, প্লেইন-টেক্সট ফাইল, অডিও এবং ভিডিও)।
এই নির্দেশিকাটি দেখায় কিভাবে একটি টেক্সট-অনলি প্রম্পট থেকে এবং একটি মৌলিক মাল্টিমোডাল প্রম্পট থেকে টেক্সট তৈরি করতে হয় যাতে একটি ফাইল অন্তর্ভুক্ত থাকে।
শুধুমাত্র টেক্সট ইনপুটের জন্য কোড নমুনাতে যান মাল্টিমডাল ইনপুটের জন্য কোড নমুনায় যান
পাঠ্যের সাথে কাজ করার জন্য অতিরিক্ত বিকল্পগুলির জন্য অন্যান্য গাইড দেখুন স্ট্রাকচার্ড আউটপুট জেনারেট করুন মাল্টি-টার্ন চ্যাট দ্বিমুখী স্ট্রিমিং পাঠ্য থেকে ছবি তৈরি করুন |
আপনি শুরু করার আগে
যদি আপনি ইতিমধ্যে না করে থাকেন, শুরু করার নির্দেশিকাটি সম্পূর্ণ করুন, যা বর্ণনা করে যে কীভাবে আপনার ফায়ারবেস প্রকল্প সেট আপ করবেন, আপনার অ্যাপকে ফায়ারবেসের সাথে সংযুক্ত করবেন, SDK যোগ করবেন, Vertex AI পরিষেবা শুরু করবেন এবং একটি GenerativeModel
উদাহরণ তৈরি করবেন।
আপনার প্রম্পটে পরীক্ষা এবং পুনরাবৃত্তি করার জন্য এবং এমনকি একটি জেনারেটেড কোড স্নিপেট পাওয়ার জন্য, আমরা Vertex AI Studio ব্যবহার করার পরামর্শ দিই।
পাঠ্য পাঠান এবং পাঠ্য গ্রহণ করুন
এই নমুনা চেষ্টা করার আগে নিশ্চিত করুন যে আপনি এই গাইডের শুরু করার আগে বিভাগটি সম্পূর্ণ করেছেন।
আপনি একটি মিথুন মডেলকে শুধুমাত্র পাঠ্য ইনপুট দিয়ে প্রম্পট করে পাঠ্য তৈরি করতে বলতে পারেন।
সুইফট
আপনি শুধুমাত্র টেক্সট ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
import FirebaseVertexAI
// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()
// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")
Kotlin
আপনি শুধুমাত্র টেক্সট ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")
// Provide a prompt that contains text
val prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
val response = generativeModel.generateContent(prompt)
print(response.text)
Java
আপনি শুধুমাত্র টেক্সট ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
ListenableFuture
প্রদান করে। // Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
// Provide a prompt that contains text
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
// To generate text output, call generateContent with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
আপনি শুধুমাত্র টেক্সট ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });
// Wrap in an async function so you can use await
async function run() {
// Provide a prompt that contains text
const prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
const result = await model.generateContent(prompt);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
আপনি শুধুমাত্র টেক্সট ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);
পাঠ্য এবং একটি ফাইল (মাল্টিমোডাল) পাঠান এবং পাঠ্য গ্রহণ করুন
এই নমুনা চেষ্টা করার আগে নিশ্চিত করুন যে আপনি এই গাইডের শুরু করার আগে বিভাগটি সম্পূর্ণ করেছেন।
আপনি একটি মিথুন মডেলকে টেক্সট এবং একটি ফাইলের সাথে প্রম্পট করে টেক্সট তৈরি করতে বলতে পারেন- প্রতিটি ইনপুট ফাইলের mimeType
এবং ফাইলটি নিজেই প্রদান করে। এই পৃষ্ঠায় পরে ইনপুট ফাইলের জন্য প্রয়োজনীয়তা এবং সুপারিশ খুঁজুন।
নিম্নলিখিত উদাহরণটি ইনলাইন ডেটা (বেস64-এনকোডেড ফাইল) হিসাবে দেওয়া একটি একক ভিডিও ফাইল বিশ্লেষণ করে একটি ফাইল ইনপুট থেকে কীভাবে পাঠ্য তৈরি করতে হয় তার মূল বিষয়গুলি দেখায়।
আপনি এই সর্বজনীনভাবে উপলব্ধ ফাইলটি একটি MIME ধরনের
video/mp4
( ফাইল দেখুন বা ডাউনলোড করুন ) এর সাথে ব্যবহার করতে পারেন।https://storage.googleapis.com/cloud-samples-data/video/animals.mp4
সুইফট
আপনি টেক্সট এবং ভিডিও ফাইলের মাল্টিমোডাল ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
import FirebaseVertexAI
// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()
// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")
// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")
Kotlin
আপনি টেক্সট এবং ভিডিও ফাইলের মাল্টিমোডাল ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
Log.d(TAG, response.text ?: "")
}
}
Java
আপনি টেক্সট এবং ভিডিও ফাইলের মাল্টিমোডাল ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
ListenableFuture
প্রদান করে। // Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Web
আপনি টেক্সট এবং ভিডিও ফাইলের মাল্টিমোডাল ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To generate text output, call generateContent with the text and video
const result = await model.generateContent([prompt, videoPart]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
আপনি টেক্সট এবং ভিডিও ফাইলের মাল্টিমোডাল ইনপুট থেকে টেক্সট তৈরি করতে generateContent()
কল করতে পারেন।
import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...videoPart])
]);
print(response.text);
আপনার ব্যবহারের ক্ষেত্রে এবং অ্যাপের জন্য উপযুক্ত একটি মডেল এবং ঐচ্ছিকভাবে একটি অবস্থান কীভাবে চয়ন করবেন তা শিখুন।
প্রতিক্রিয়া স্ট্রীম
এই নমুনা চেষ্টা করার আগে নিশ্চিত করুন যে আপনি এই গাইডের শুরু করার আগে বিভাগটি সম্পূর্ণ করেছেন।
আপনি মডেল জেনারেশন থেকে সম্পূর্ণ ফলাফলের জন্য অপেক্ষা না করে দ্রুত মিথস্ক্রিয়া অর্জন করতে পারেন এবং পরিবর্তে আংশিক ফলাফল পরিচালনা করতে স্ট্রিমিং ব্যবহার করতে পারেন। প্রতিক্রিয়া স্ট্রিম করতে, generateContentStream
কল করুন।
সুইফট
আপনি শুধুমাত্র টেক্সট ইনপুট থেকে জেনারেট করা টেক্সট স্ট্রিম করতে generateContentStream()
কল করতে পারেন।
import FirebaseVertexAI
// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()
// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To stream generated text output, call generateContentStream with the text input
let contentStream = try model.generateContentStream(prompt)
for try await chunk in contentStream {
if let text = chunk.text {
print(text)
}
}
Kotlin
আপনি শুধুমাত্র টেক্সট ইনপুট থেকে জেনারেট করা টেক্সট স্ট্রিম করতে generateContentStream()
কল করতে পারেন।
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")
// Provide a prompt that includes only text
val prompt = "Write a story about a magic backpack."
// To stream generated text output, call generateContentStream and pass in the prompt
var response = ""
generativeModel.generateContentStream(prompt).collect { chunk ->
print(chunk.text)
response += chunk.text
}
Java
আপনি শুধুমাত্র টেক্সট ইনপুট থেকে জেনারেট করা টেক্সট স্ট্রিম করতে generateContentStream()
কল করতে পারেন।
Publisher
টাইপ ফেরত দেয়। // Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
// Provide a prompt that contains text
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
// To stream generated text output, call generateContentStream with the text input
Publisher<GenerateContentResponse> streamingResponse =
model.generateContentStream(prompt);
// Subscribe to partial results from the response
final String[] fullResponse = {""};
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
@Override
public void onNext(GenerateContentResponse generateContentResponse) {
String chunk = generateContentResponse.getText();
fullResponse[0] += chunk;
}
@Override
public void onComplete() {
System.out.println(fullResponse[0]);
}
@Override
public void onError(Throwable t) {
t.printStackTrace();
}
@Override
public void onSubscribe(Subscription s) { }
});
Web
আপনি শুধুমাত্র টেক্সট ইনপুট থেকে জেনারেট করা টেক্সট স্ট্রিম করতে generateContentStream()
কল করতে পারেন।
import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });
// Wrap in an async function so you can use await
async function run() {
// Provide a prompt that contains text
const prompt = "Write a story about a magic backpack."
// To stream generated text output, call generateContentStream with the text input
const result = await model.generateContentStream(prompt);
for await (const chunk of result.stream) {
const chunkText = chunk.text();
console.log(chunkText);
}
console.log('aggregated response: ', await result.response);
}
run();
Dart
আপনি শুধুমাত্র টেক্সট ইনপুট থেকে জেনারেট করা টেক্সট স্ট্রিম করতে generateContentStream()
কল করতে পারেন।
import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To stream generated text output, call generateContentStream with the text input
final response = model.generateContentStream(prompt);
await for (final chunk in response) {
print(chunk.text);
}
সুইফট
আপনি টেক্সট এবং একটি একক ভিডিওর মাল্টিমোডাল ইনপুট থেকে জেনারেট করা পাঠ্য স্ট্রিম করতে generateContentStream()
কল করতে পারেন।
import FirebaseVertexAI
// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()
// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")
// Provide the video as `Data` with the appropriate MIME type
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To stream generated text output, call generateContentStream with the text and video
let contentStream = try model.generateContentStream(video, prompt)
for try await chunk in contentStream {
if let text = chunk.text {
print(text)
}
}
Kotlin
টেক্সটের মাল্টিমডাল ইনপুট এবং একটি ভিডিও থেকে জেনারেট করা টেক্সট স্ট্রিম করতে আপনি generateContentStream()
কল করতে পারেন।
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To stream generated text output, call generateContentStream with the prompt
var fullResponse = ""
generativeModel.generateContentStream(prompt).collect { chunk ->
Log.d(TAG, chunk.text ?: "")
fullResponse += chunk.text
}
}
}
Java
আপনি টেক্সট এবং একটি একক ভিডিওর মাল্টিমোডাল ইনপুট থেকে জেনারেট করা পাঠ্য স্ট্রিম করতে generateContentStream()
কল করতে পারেন।
Publisher
টাইপ ফেরত দেয়। // Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To stream generated text output, call generateContentStream with the prompt
Publisher<GenerateContentResponse> streamingResponse =
model.generateContentStream(prompt);
final String[] fullResponse = {""};
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
@Override
public void onNext(GenerateContentResponse generateContentResponse) {
String chunk = generateContentResponse.getText();
fullResponse[0] += chunk;
}
@Override
public void onComplete() {
System.out.println(fullResponse[0]);
}
@Override
public void onError(Throwable t) {
t.printStackTrace();
}
@Override
public void onSubscribe(Subscription s) {
}
});
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Web
আপনি টেক্সট এবং একটি একক ভিডিওর মাল্টিমোডাল ইনপুট থেকে জেনারেট করা পাঠ্য স্ট্রিম করতে generateContentStream()
কল করতে পারেন।
import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To stream generated text output, call generateContentStream with the text and video
const result = await model.generateContentStream([prompt, videoPart]);
for await (const chunk of result.stream) {
const chunkText = chunk.text();
console.log(chunkText);
}
}
run();
Dart
টেক্সটের মাল্টিমডাল ইনপুট এবং একটি ভিডিও থেকে জেনারেট করা টেক্সট স্ট্রিম করতে আপনি generateContentStream()
কল করতে পারেন।
import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To stream generated text output, call generateContentStream with the text and image
final response = await model.generateContentStream([
Content.multi([prompt,videoPart])
]);
await for (final chunk in response) {
print(chunk.text);
}
ইনপুট ইমেজ ফাইলের জন্য প্রয়োজনীয়তা এবং সুপারিশ
নিম্নোক্ত বিষয়ে বিস্তারিত তথ্য জানতে Vertex AI Gemini API-এর জন্য সমর্থিত ইনপুট ফাইল এবং প্রয়োজনীয়তা দেখুন:
- একটি অনুরোধে একটি ফাইল প্রদানের জন্য বিভিন্ন বিকল্প (হয় ইনলাইন বা ফাইলের URL বা URI ব্যবহার করে)
- সমর্থিত ফাইল প্রকার
- সমর্থিত MIME প্রকার এবং কিভাবে সেগুলি নির্দিষ্ট করতে হয়৷
- ফাইল এবং মাল্টিমোডাল অনুরোধের জন্য প্রয়োজনীয়তা এবং সর্বোত্তম অনুশীলন
আপনি আর কি করতে পারেন?
- মডেলে দীর্ঘ প্রম্পট পাঠানোর আগে কীভাবে টোকেন গণনা করবেন তা শিখুন।
- Cloud Storage for Firebase সেট আপ করুন যাতে আপনি আপনার মাল্টিমোডাল অনুরোধগুলিতে বড় ফাইলগুলি অন্তর্ভুক্ত করতে পারেন এবং প্রম্পটে ফাইলগুলি সরবরাহ করার জন্য আরও পরিচালিত সমাধান পেতে পারেন৷ ফাইলগুলিতে ছবি, পিডিএফ, ভিডিও এবং অডিও অন্তর্ভুক্ত থাকতে পারে।
- জেমিনি API কে অননুমোদিত ক্লায়েন্টদের অপব্যবহার থেকে রক্ষা করতে Firebase App Check সেট আপ সহ উত্পাদনের জন্য প্রস্তুতির বিষয়ে চিন্তা করা শুরু করুন৷ এছাড়াও, উত্পাদন চেকলিস্ট পর্যালোচনা করতে ভুলবেন না।
অন্যান্য ক্ষমতা ব্যবহার করে দেখুন
- মাল্টি-টার্ন কথোপকথন তৈরি করুন (চ্যাট) ।
- শুধুমাত্র পাঠ্য প্রম্পট থেকে পাঠ্য তৈরি করুন।
- টেক্সট এবং মাল্টিমোডাল প্রম্পট উভয় থেকে কাঠামোগত আউটপুট (যেমন JSON) তৈরি করুন।
- টেক্সট প্রম্পট থেকে ছবি তৈরি করুন।
- বাহ্যিক সিস্টেম এবং তথ্যের সাথে জেনারেটিভ মডেল সংযোগ করতে ফাংশন কলিং ব্যবহার করুন।
বিষয়বস্তু তৈরি নিয়ন্ত্রণ কিভাবে শিখুন
- সর্বোত্তম অনুশীলন, কৌশল এবং উদাহরণ প্রম্পট সহ প্রম্পট ডিজাইন বুঝুন ।
- তাপমাত্রা এবং সর্বোচ্চ আউটপুট টোকেন ( মিথুনের জন্য) বা আকৃতির অনুপাত এবং ব্যক্তি তৈরির ( ইমেজেনের জন্য) মত মডেল প্যারামিটারগুলি কনফিগার করুন ।
- ক্ষতিকারক বলে বিবেচিত প্রতিক্রিয়া পাওয়ার সম্ভাবনা সামঞ্জস্য করতে নিরাপত্তা সেটিংস ব্যবহার করুন ।
সমর্থিত মডেল সম্পর্কে আরও জানুন
বিভিন্ন ব্যবহারের ক্ষেত্রে উপলব্ধ মডেল এবং তাদের কোটা এবং মূল্য সম্পর্কে জানুন।Firebase-এ Vertex AI-এর সাথে আপনার অভিজ্ঞতা সম্পর্কে মতামত দিন