Chatbox 连接 vLLM Qwen3

Chatbox 连接 vLLM Qwen3

flyfish

vLLM加载Qwen3

vllm serve Qwen3-14B

INFO 06-14 10:17:13 [__init__.py:239] Automatically detected platform cuda.
INFO 06-14 10:17:14 [api_server.py:1034] vLLM API server version 0.8.4
INFO 06-14 10:17:14 [api_server.py:1035] args: Namespace(subparser='serve', model_tag='Qwen3-14B', config='', host=None, port=8000, uvicorn_log_level='info', disable_uvicorn_access_log=False, allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, enable_ssl_refresh=False, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, tool_call_parser=None, tool_parser_plugin='', model='Qwen3-14B', task='auto', tokenizer=None, hf_config_path=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, load_format='auto', download_dir=None, model_loader_extra_config=None, use_tqdm_on_load=True, config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=None, guided_decoding_backend='auto', logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=1, data_parallel_size=1, enable_expert_parallel=False, max_parallel_loading_workers=None, ray_workers_use_nsight=False, disable_custom_all_reduce=False, block_size=None, enable_prefix_caching=None, prefix_caching_hash_algo='builtin', disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=None, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_token=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', num_scheduler_steps=1, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', worker_extension_cls='', generation_config='auto', override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, additional_config=None, enable_reasoning=False, reasoning_parser=None, disable_cascade_attn=False, disable_chunked_mm_input=False, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, enable_server_load_tracking=False, dispatch_function=<function ServeSubcommand.cmd at 0x7b2744d29760>)
INFO 06-14 10:17:20 [config.py:689] This model supports multiple tasks: {'classify', 'embed', 'score', 'reward', 'generate'}. Defaulting to 'generate'.
INFO 06-14 10:17:20 [config.py:1901] Chunked prefill is enabled with max_num_batched_tokens=2048.
INFO 06-14 10:17:24 [__init__.py:239] Automatically detected platform cuda.
INFO 06-14 10:17:26 [core.py:61] Initializing a V1 LLM engine (v0.8.4) with config: model='Qwen3-14B', speculative_config=None, tokenizer='Qwen3-14B', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=40960, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto,  device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='auto', reasoning_backend=None), observability_config=ObservabilityConfig(show_hidden_metrics=False, otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=None, served_model_name=Qwen3-14B, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=True, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"level":3,"custom_ops":["none"],"splitting_ops":["vllm.unified_attention","vllm.unified_attention_with_output"],"use_inductor":true,"compile_sizes":[],"use_cudagraph":true,"cudagraph_num_of_warmups":1,"cudagraph_capture_sizes":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":512}
/home/user/anaconda3/envs/vllm/lib/python3.12/site-packages/vllm/executor/uniproc_executor.py:29: UserWarning: Failed to get the IP address, using 0.0.0.0 by default.The value can be set by the environment variable VLLM_HOST_IP or HOST_IP.
  get_ip(), get_open_port())
WARNING 06-14 10:17:27 [utils.py:2444] Methods determine_num_available_blocks,device_config,get_cache_block_size_bytes,initialize_cache not implemented in <vllm.v1.worker.gpu_worker.Worker object at 0x79cbdc7c17f0>
INFO 06-14 10:17:27 [parallel_state.py:959] rank 0 in world size 1 is assigned as DP rank 0, PP rank 0, TP rank 0
INFO 06-14 10:17:27 [cuda.py:221] Using Flash Attention backend on V1 engine.
INFO 06-14 10:17:27 [gpu_model_runner.py:1276] Starting to load model Qwen3-14B...
INFO 06-14 10:17:27 [topk_topp_sampler.py:44] Currently, FlashInfer top-p & top-k sampling sampler is disabled because FlashInfer>=v0.2.3 is not backward compatible. Falling back to the PyTorch-native implementation of top-p & top-k sampling.
Loading safetensors checkpoint shards:   0% Completed | 0/8 [00:00<?, ?it/s]
...

INFO 06-14 10:19:39 [loader.py:458] Loading weights took 132.14 seconds
INFO 06-14 10:19:39 [gpu_model_runner.py:1291] Model loading took 27.5185 GiB and 132.297254 seconds
INFO 06-14 10:19:49 [backends.py:416] Using cache directory: /home/user/.cache/vllm/torch_compile_cache/88c77cf337/rank_0_0 for vLLM's torch.compile
INFO 06-14 10:19:49 [backends.py:426] Dynamo bytecode transform time: 9.16 s
INFO 06-14 10:19:54 [backends.py:132] Cache the graph of shape None for later use
INFO 06-14 10:20:27 [backends.py:144] Compiling a graph for general shape takes 38.03 s
INFO 06-14 10:21:02 [monitor.py:33] torch.compile takes 47.19 s in total
INFO 06-14 10:21:03 [kv_cache_utils.py:634] GPU KV cache size: 85,632 tokens
INFO 06-14 10:21:03 [kv_cache_utils.py:637] Maximum concurrency for 40,960 tokens per request: 2.09x
INFO 06-14 10:21:29 [gpu_model_runner.py:1626] Graph capturing finished in 26 secs, took 0.68 GiB
INFO 06-14 10:21:29 [core.py:163] init engine (profile, create kv cache, warmup model) took 109.58 seconds
INFO 06-14 10:21:29 [core_client.py:435] Core engine process 0 ready.
WARNING 06-14 10:21:29 [config.py:1177] Default sampling parameters have been overridden by the model's Hugging Face generation config recommended from the model creator. If this is not intended, please relaunch vLLM instance with `--generation-config vllm`.
INFO 06-14 10:21:29 [serving_chat.py:118] Using default chat sampling params from model: {'temperature': 0.6, 'top_k': 20, 'top_p': 0.95}
INFO 06-14 10:21:29 [serving_completion.py:61] Using default completion sampling params from model: {'temperature': 0.6, 'top_k': 20, 'top_p': 0.95}
INFO 06-14 10:21:29 [api_server.py:1081] Starting vLLM API server on http://0.0.0.0:8000
INFO 06-14 10:21:29 [launcher.py:26] Available routes are:
INFO 06-14 10:21:29 [launcher.py:34] Route: /openapi.json, Methods: GET, HEAD
INFO 06-14 10:21:29 [launcher.py:34] Route: /docs, Methods: GET, HEAD
INFO 06-14 10:21:29 [launcher.py:34] Route: /docs/oauth2-redirect, Methods: GET, HEAD
INFO 06-14 10:21:29 [launcher.py:34] Route: /redoc, Methods: GET, HEAD
INFO 06-14 10:21:29 [launcher.py:34] Route: /health, Methods: GET
INFO 06-14 10:21:29 [launcher.py:34] Route: /load, Methods: GET
INFO 06-14 10:21:29 [launcher.py:34] Route: /ping, Methods: GET, POST
INFO 06-14 10:21:29 [launcher.py:34] Route: /tokenize, Methods: POST
INFO 06-14 10:21:29 [launcher.py:34] Route: /detokenize, Methods: POST
INFO 06-14 10:21:29 [launcher.py:34] Route: /v1/models, Methods: GET
INFO 06-14 10:21:29 [launcher.py:34] Route: /version, Methods: GET
INFO 06-14 10:21:29 [launcher.py:34] Route: /v1/chat/completions, Methods: POST
INFO 06-14 10:21:29 [launcher.py:34] Route: /v1/completions, Methods: POST
INFO 06-14 10:21:29 [launcher.py:34] Route: /v1/embeddings, Methods: POST
INFO 06-14 10:21:29 [launcher.py:34] Route: /pooling, Methods: POST
INFO 06-14 10:21:29 [launcher.py:34] Route: /score, Methods: POST
INFO 06-14 10:21:29 [launcher.py:34] Route: /v1/score, Methods: POST
INFO 06-14 10:21:29 [launcher.py:34] Route: /v1/audio/transcriptions, Methods: POST
INFO 06-14 10:21:29 [launcher.py:34] Route: /rerank, Methods: POST
INFO 06-14 10:21:29 [launcher.py:34] Route: /v1/rerank, Methods: POST
INFO 06-14 10:21:29 [launcher.py:34] Route: /v2/rerank, Methods: POST
INFO 06-14 10:21:29 [launcher.py:34] Route: /invocations, Methods: POST
INFO:     Started server process [10139]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO 06-14 10:21:39 [loggers.py:87] Engine 000: Avg prompt throughput: 0.0 tokens/s, Avg generation throughput: 0.0 tokens/s, Running: 0 reqs, Waiting: 0 reqs, GPU KV cache usage: 0.0%, Prefix cache hit rate: 0.0%

1. 基础信息

  • 模型名称:Qwen3-14B(140亿参数量的Qwen3版本)
  • 运行框架:vLLM 0.8.4(高性能LLM推理框架)
  • 硬件环境:CUDA平台(NVIDIA GPU)
  • 启动命令:vllm serve Qwen3-14B

2. 关键启动过程

  • 使用的采样参数(默认):
    • 生成温度(Temperature):0.6
    • Top-k:20
    • Top-p:0.95

3. 系统配置

  • 监听端口:8000
  • 启用功能:
    • Chat(聊天)
    • Completion(文本生成)
    • Embedding(嵌入)
    • 多种推理模式(generate, classify, score, reward)
  • 调用接口示例:
    • 本地调用:http://localhost:8000/v1/chat/completions
    • 其他支持接口包括:
      • /v1/completions(文本生成)
      • /v1/embeddings(文本嵌入)
      • /v1/rerank(重排序)

Chatbox 配置

在这里插入图片描述

在这里插入图片描述

### ChatboxQwen2.5-Max的差异和兼容性 #### 功能特性对比 Chatbox是一款AI客户端应用和支持多种先进AI模型和服务接口的应用程序,可以在多个操作系统平台上使用,包括Windows、MacOS、Android、iOS、Linux以及网页版本[^1]。而Qwen2.5-Coder:7b属于特定的大规模预训练语言模型之一,在这里提到的是其具体的一个变种——Qwen2.5-Max并未直接提及于给定的信息中。 对于Qwen2.5系列中的不同版本而言,通常这些模型会具有不同的架构设计、参数量大小以及其他优化措施来满足多样化的应用场景需求。例如,已知Qwen2.5-Coder拥有良好的性能表现并能够较为流畅地运行;相比之下,虽然DeepSeek-R1由于更大的参数数量而导致处理速度较慢一些,但依然保持可接受范围内。 然而关于Qwen2.5-Max的具体细节并没有提供足够的资料来进行详尽描述。一般情况下,“Max”可能意味着该版本具备更广泛的上下文窗口长度或是经过特别调优后的高级功能集等特征。为了准确理解两者间的区别及其相互间如何协作或集成在一起工作,则需要进一步查阅官方文档获取更多有关Qwen2.5-Max的技术规格说明。 #### 兼容性和部署考量 当考虑将Qwen2.5-Max与其他工具如Chatbox配合使用时,主要关注点在于API层面的支持程度和技术栈匹配度方面。如果目标是通过服务接口实现两者的对接,那么只要确保所选平台(无论是本地环境还是云端实例)提供了必要的依赖项安装指南,并遵循相应的配置流程即可完成设置过程。 另外值得注意的是LMDeploy项目所提供的技术能力增强了大型语言模型在实际应用中的效率和灵活性,比如支持KV Cache量化等功能有助于改善推理阶段的表现[^2]。因此,在评估是否采用Qwen2.5-Max作为新的组件加入现有系统之前,应当充分考察它能否受益于类似的加速机制从而提升整体用户体验质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值