大模型在垂直领域使用时需要修改或增强的原因
目前大模型存在的问题:
-
幻觉问题LLM有时会生成看似合理但实际错误的内容,这种现象被称为“幻觉”。这主要是由于预训练数据的局限性,模型可能缺乏特定领域的知识,或在数据中学习到错误信息。
-
时效性问题LLM的训练数据通常截至于特定时间点,因此无法处理训练后发生的事件或更新的信息。这在需要实时信息的应用中是一个显著的限制。
-
专业知识不足大模型(如GPT、LLaMA等)通常是在大规模通用数据上预训练的,因此在知识覆盖、语言能力上表现优秀,但对于某些垂直领域(如医疗、法律、金融)的专业知识和特定语境可能并不充分。
主要解决的方法:
检索增强生成(RAG):结合信息检索和生成模型,在生成回答时实时检索最新的外部信息,以提供准确且最新的内容。微调(Fine-Tuning):使用领域特定的数据对模型进行微调,使其更好地掌握专业知识,减少幻觉现象。
达成后的效果:
专业知识强化:通过微调或增强,模型可以更好地掌握专业术语和领域知识。语言风格定制:各个领域有不同的表达方式和风格,微调后模型能更符合专业语境。降低风险:对于敏感领域,错误回答可能带来较大风险,定制化模型能更好地规避这种风险。
检索增强生成(RAG)和微调(Fine-Tuning)选择
· RAG(Retrieval-Augmented Generation)
》概念:不直接修改模型参数,而是通过检索模块在生成回答时从外部知识库(如文档、数据库)中检索最新或专业知识辅助回答。
》优点:可动态更新知识库,适用于信息更新快的场景。
》缺点:依赖外部检索系统的质量和响应速度。
· 微调(Fine-Tuning)
》概念:通过在垂直领域的专用数据上对大模型进行二次训练,优化模型的领域知识和语言风格。
》优点:使模型深入学习领域知识,响应更贴近专业要求。
》缺点:需准备高质量数据集,计算成本较高。
幻觉处理
判断依据:大模型有时会生成“幻觉”信息(即不符合事实的内容)。
▶推荐技术:RAG
▶借助检索模块为生成结果提供真实的外部依据,从而有效减少幻觉现象。
可解释性
▶判断依据:在某些场景下,答案需要有明确的依据或来源以便审查。
▶推荐技术:RAG
▶检索到的文档或数据可以作为生成内容的解释依据,增强系统的透明性和可解释性。
开发成本
判断依据:如果希望降低系统开发和维护成本,需要考虑训练复杂度以及额外系统组件的投入。推荐技术:RAG这种方法无需对预训练模型改动,开发难度低。
依赖原有大模型通用能力
判断依据:如果要求保留大模型在通用领域积累的丰富知识,仅在特定领域增加补充信息。推荐技术:RAG这种方法无需对预训练模型进行改动,既能利用原有通用能力,又能通过外部数据做补充。
RAG和微调的选择的实际案例例子
1:实时新闻摘要系统
背景说明:新闻内容每天都有大量更新,用户希望及时获取最新资讯和摘要。
技术选择:RAG采用RAG技术,通过接入实时更新的新闻数据库,检索最新的新闻内容,再结合预训练模型生成摘要。能够动态调用外部知识库,确保生成内容与当前信息保持一致,无需频繁重新训练模型。
例子2:法律咨询平台
背景说明:法律领域具有高度专业性,回答要求严谨、精准。预训练模型虽然具备通用知识,但在专业法律问题上可能不够准确。
>技术选择:微调+RAG通过在大量法律条文、判例和合同案例上进行Fine-tuning,使模型更好地掌握法律专业术语和逻辑。模型经过微调后能生成专业、定制化的法律回答,满足高标准的法律咨询需求。
往期精彩
从O(n²)到O(n):基于累计求和模型的线性递归模式优化与多场景实战
华中科技大学-从DeepSeek到Manus AI如何重塑企业价值【文末附下载链接】
Manus-AI:Agent应用的ChatGPT时刻【文末附完整版下载链接】
DeepSeek 提示词设计、幻觉避免与应用【兼谈Manus智能,附下载链接】
PPT下载链接:或阅读原文获取
https://download.csdn.net/download/godlovedaniel/90479553