大模型本地部署和微调技术

大模型在垂直领域使用时需要修改或增强的原因

目前大模型存在的问题:

  1. 幻觉问题LLM有时会生成看似合理但实际错误的内容,这种现象被称为“幻觉”。这主要是由于预训练数据的局限性,模型可能缺乏特定领域的知识,或在数据中学习到错误信息。

  2. 时效性问题LLM的训练数据通常截至于特定时间点,因此无法处理训练后发生的事件或更新的信息。这在需要实时信息的应用中是一个显著的限制。

  3. 专业知识不足大模型(如GPT、LLaMA等)通常是在大规模通用数据上预训练的,因此在知识覆盖、语言能力上表现优秀,但对于某些垂直领域(如医疗、法律、金融)的专业知识和特定语境可能并不充分。

主要解决的方法:

检索增强生成(RAG):结合信息检索和生成模型,在生成回答时实时检索最新的外部信息,以提供准确且最新的内容。微调(Fine-Tuning):使用领域特定的数据对模型进行微调,使其更好地掌握专业知识,减少幻觉现象。

达成后的效果:

专业知识强化:通过微调或增强,模型可以更好地掌握专业术语和领域知识。语言风格定制:各个领域有不同的表达方式和风格,微调后模型能更符合专业语境。降低风险:对于敏感领域,错误回答可能带来较大风险,定制化模型能更好地规避这种风险。

检索增强生成(RAG)和微调(Fine-Tuning)选择

· RAG(Retrieval-Augmented Generation)

》概念:不直接修改模型参数,而是通过检索模块在生成回答时从外部知识库(如文档、数据库)中检索最新或专业知识辅助回答。

》优点:可动态更新知识库,适用于信息更新快的场景。

》缺点:依赖外部检索系统的质量和响应速度。

· 微调(Fine-Tuning)

》概念:通过在垂直领域的专用数据上对大模型进行二次训练,优化模型的领域知识和语言风格。

》优点:使模型深入学习领域知识,响应更贴近专业要求。

》缺点:需准备高质量数据集,计算成本较高。

幻觉处理

判断依据:大模型有时会生成“幻觉”信息(即不符合事实的内容)。

▶推荐技术:RAG

▶借助检索模块为生成结果提供真实的外部依据,从而有效减少幻觉现象。

可解释性

▶判断依据:在某些场景下,答案需要有明确的依据或来源以便审查。

▶推荐技术:RAG

▶检索到的文档或数据可以作为生成内容的解释依据,增强系统的透明性和可解释性。

开发成本

判断依据:如果希望降低系统开发和维护成本,需要考虑训练复杂度以及额外系统组件的投入。推荐技术:RAG这种方法无需对预训练模型改动,开发难度低。

依赖原有大模型通用能力

判断依据:如果要求保留大模型在通用领域积累的丰富知识,仅在特定领域增加补充信息。推荐技术:RAG这种方法无需对预训练模型进行改动,既能利用原有通用能力,又能通过外部数据做补充。

RAG和微调的选择的实际案例例子

1:实时新闻摘要系统

背景说明:新闻内容每天都有大量更新,用户希望及时获取最新资讯和摘要。

技术选择:RAG采用RAG技术,通过接入实时更新的新闻数据库,检索最新的新闻内容,再结合预训练模型生成摘要。能够动态调用外部知识库,确保生成内容与当前信息保持一致,无需频繁重新训练模型。

例子2:法律咨询平台

背景说明:法律领域具有高度专业性,回答要求严谨、精准。预训练模型虽然具备通用知识,但在专业法律问题上可能不够准确。

>技术选择:微调+RAG通过在大量法律条文、判例和合同案例上进行Fine-tuning,使模型更好地掌握法律专业术语和逻辑。模型经过微调后能生成专业、定制化的法律回答,满足高标准的法律咨询需求。

往期精彩

DeepSeek + RAG 本地知识库搭建实战

面试提问:数仓设计不分层可以吗?

DeepSeek在医学领域的应用场景

DeepSeek大模型在政务服务领域的应用

半导体晶圆制造良率提升的指标体系设计

从O(n²)到O(n):基于累计求和模型的线性递归模式优化与多场景实战

华中科技大学-从DeepSeek到Manus AI如何重塑企业价值【文末附下载链接】

基于增量滚动计算策略的数仓累计计算指标的优化实战

Hive正则表达式基础用法与应用

千亿级表中收入中位数如何利用Hive SQL优化?

Manus-AI:Agent应用的ChatGPT时刻【文末附完整版下载链接】

DeepSeek 提示词设计、幻觉避免与应用【兼谈Manus智能,附下载链接】

PPT下载链接:或阅读原文获取

https://download.csdn.net/download/godlovedaniel/90479553

### 部署微调大型机器学习模型的方法 #### 1. 准备环境 为了成功部署微调大型机器学习模型,需先配置合适的开发环境。这涉及安装必要的软件库支持工具链。对于大多数深度学习项目而言,Python 是首选编程语言之一。推荐使用虚拟环境来管理依赖项。 ```bash conda create -n ml_env python=3.9 conda activate ml_env pip install torch torchvision torchaudio transformers datasets evaluate accelerate ``` 上述命令创建了一个名为 `ml_env` 的新 Conda 虚拟环境,并激活该环境后安装了一系列常用的 Python 库[^1]。 #### 2. 获取预训练模型 许多研究机构个人开发者都会公开分享其预先训练好的权重文件供他人下载使用。Hugging Face 提供了一站式的平台让使用者可以轻松获取各种类型的预训练模型及其配套资源。 ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` 这段代码展示了如何利用 HuggingFace Transformers 库加载 BERT 模型来进行序列分类任务的初始化过程[^2]。 #### 3. 数据准备与处理 有效的特征工程能够显著提升最终预测效果的好坏程度。针对具体应用场景的特点设计合理的输入表示形式至关重要。例如,在自然语言处理领域内常见的做法是对文本进行编码转换成向量表达;而在计算机视觉方面则可能涉及到图像尺寸调整、颜色空间变换等一系列操作。 ```python import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv('path/to/dataset.csv') train_data, val_data = train_test_split(data, test_size=0.2) def preprocess_function(examples): return tokenizer(examples['text'], truncation=True, padding='max_length') encoded_train_dataset = train_data.map(preprocess_function, batched=True) encoded_val_dataset = val_data.map(preprocess_function, batched=True) ``` 此部分说明了读取 CSV 文件作为数据源,并将其划分为训练集验证集的过程。接着定义了一个函数用于执行 tokenization 处理,最后应用到整个数据集中去。 #### 4. 微调策略 当拥有足够的标注样本之后就可以考虑对选定的基础架构实施进一步优化工作——即所谓的迁移学习(Transfer Learning)。通过冻结某些层参数不变而仅更新其余可变部分的方式可以在保持原有泛化能力的同时快速适应新的目标任务需求。 ```python from transformers import Trainer, TrainingArguments training_args = TrainingArguments( output_dir='./results', evaluation_strategy="epoch", per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=encoded_train_dataset, eval_dataset=encoded_val_dataset, ) trainer.train() ``` 这里介绍了基于 PyTorch HuggingFace Trainer API 实现简单版 Fine-Tuning 流程的具体实现方式。设置好超参选项后即可启动正式训练流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值