【论文分享】小样本半监督图结点分类模型 Meta-PN:Meta Propagation Networks for Graph Few-shot Semi-supervised Learning

Meta-PN是一种新的图元学习框架,旨在解决小样本半监督节点分类问题。该框架包含Adaptive Label Propagator(元学习器)和Feature-label Transformer(目标模型)。元学习器通过目标模型的反馈调整传播策略,生成准确的伪标签,而目标模型则利用这些伪标签学习节点的结构和特征知识。实验表明,Meta-PN在各种数据集上表现优越,尤其在资源有限的情况下。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 PPT

在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

vector<>

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值