- 题目:Meta Propagation Networks for Graph Few-shot Semi-supervised Learning
- 链接:https://arxiv.org/abs/2112.09810
- 源码:https://github.com/kaize0409/Meta-PN
- 会议:AAAI Conference on Artificial Intelligence (AAAI) 2022. CCF-A
- 时间:2022-04-01
- 摘要:本文提出了一种新的图元学习框架:元传播网络(Meta- PN),用于解决小样本半监督节点分类问题。该框架由两个部分构成 1. Adaptive Label Propagator (Meta Learner):利用目标模型的反馈来调整其传播策略,以在未标记节点上推断出准确的伪标签。2. Feature-label Transformer (Target Model): 吸收伪标记节点的结构和特征知识预测标签,从而解决了小样本半监督学习背后的挑战。
0 PPT