Skip to content

The error when as_datetime acts on multiple timezones is not useful #25978

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
dougthor42 opened this issue Apr 3, 2019 · 3 comments · Fixed by #25982
Closed

The error when as_datetime acts on multiple timezones is not useful #25978

dougthor42 opened this issue Apr 3, 2019 · 3 comments · Fixed by #25982
Labels
Error Reporting Incorrect or improved errors from pandas Timezones Timezone data dtype
Milestone

Comments

@dougthor42
Copy link

Code Sample, a copy-pastable example if possible

s = pd.Series([
    'nan',
    pd.Timestamp("1990-01-01"),
    "2015-03-14T16:15:14.123-08:00",
    "2019-03-04T21:56:32.620-07:00",         # Note different TimeZone
    None,
])
print(s)
#0                              nan
#1              1990-01-01 00:00:00
#2    2015-03-14T16:15:14.123-08:00
#3    2019-03-04T21:56:32.620-07:00
#4                             None
#dtype: object
pd.to_datetime(s)
#Traceback (most recent call last):
#  File "<stdin>", line 1, in <module>
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/tools/datetimes.py", line 592, in to_datetime
#    values = convert_listlike(arg._values, True, format)
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/tools/datetimes.py", line 302, in _convert_listlike_datetimes
#    allow_object=True)
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/arrays/datetimes.py", line 1857, in objects_to_datetime64ns
#    require_iso8601=require_iso8601
#  File "pandas/_libs/tslib.pyx", line 460, in pandas._libs.tslib.array_to_datetime
#  File "pandas/_libs/tslib.pyx", line 712, in pandas._libs.tslib.array_to_datetime
#  File "pandas/_libs/tslib.pyx", line 813, in pandas._libs.tslib.array_to_datetime_object
#RuntimeError: No active exception to reraise

Problem description

Throwing RuntimeError does not give the user any feedback on how to fix things. The correct way to fix this is to add utc=True:

pd.to_datetime(s, utc=True)
#0                                NaT
#1          1990-01-01 00:00:00+00:00
#2   2015-03-15 00:15:14.123000+00:00
#3   2019-03-05 04:56:32.620000+00:00
#4                                NaT
#dtype: datetime64[ns, UTC]

Expected Output

The error message should be more descriptive, perhaps something like:

ValueError: array must be all same time zone

The above is the same error provided by pandas._libs.tslibs.conversion.datetime_to_datetime64 and can be seen using this example:

import numpy as np
import pandas as pd
df = pd.DataFrame([['1', "2019-04-03T16:13:27.123-08:00"], ['2', "2019-01-01T13:45:46.424-07:00"]])dd
print(df.types)
#0    object
#1    object
#dtype: object
df[1].astype(np.datetime64)
#Traceback (most recent call last):
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/arrays/datetimes.py", line 1861, in objects_to_datetime64ns
#    values, tz_parsed = conversion.datetime_to_datetime64(data)
#  File "pandas/_libs/tslibs/conversion.pyx", line 185, in pandas._libs.tslibs.conversion.datetime_to_datetime64
#ValueError: Array must be all same time zone
#
#During handling of the above exception, another exception occurred:
#
#Traceback (most recent call last):
#  File "<stdin>", line 1, in <module>
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/generic.py", line 5691, in astype
#    **kwargs)
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/internals/managers.py", line 531, in astype
#    return self.apply('astype', dtype=dtype, **kwargs)
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/internals/managers.py", line 395, in apply
#    applied = getattr(b, f)(**kwargs)
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/internals/blocks.py", line 534, in astype
#    **kwargs)
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/internals/blocks.py", line 633, in _astype
#    values = astype_nansafe(values.ravel(), dtype, copy=True)
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/dtypes/cast.py", line 690, in astype_nansafe
#    return astype_nansafe(to_datetime(arr).values, dtype, copy=copy)
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/dtypes/cast.py", line 690, in astype_nansafe
#    return astype_nansafe(to_datetime(arr).values, dtype, copy=copy)
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/tools/datetimes.py", line 609, in to_datetime
#    result = convert_listlike(arg, box, format)
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/tools/datetimes.py", line 302, in _convert_listlike_datetimes
#    allow_object=True)
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/arrays/datetimes.py", line 1866, in objects_to_datetime64ns
#    raise e
#  File "/c/gitlab/tph-admin/gitlab-activity-monitor/.venv-gam/lib/python3.6/site-packages/pandas/core/arrays/datetimes.py", line 1857, in objects_to_datetime64ns
#    require_iso8601=require_iso8601
#  File "pandas/_libs/tslib.pyx", line 460, in pandas._libs.tslib.array_to_datetime
#  File "pandas/_libs/tslib.pyx", line 537, in pandas._libs.tslib.array_to_datetime
#ValueError: Tz-aware datetime.datetime cannot be converted to datetime64 unless utc=True

Output of pd.show_versions()

>>> import pandas as pd
>>> pd.show_versions()

INSTALLED VERSIONS
------------------
commit: None
python: 3.6.7.final.0
python-bits: 64
OS: Linux
OS-release: 4.4.0-17763-Microsoft
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8

pandas: 0.24.2
pytest: None
pip: 19.0.3
setuptools: 40.9.0
Cython: None
numpy: 1.16.2
scipy: None
pyarrow: None
xarray: None
IPython: None
sphinx: None
patsy: None
dateutil: 2.8.0
pytz: 2018.9
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: None
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml.etree: None
bs4: None
html5lib: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: None
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None
gcsfs: None
@mroeschke
Copy link
Member

mroeschke commented Apr 3, 2019

So the presence of pd.Timestamp("1990-01-01") causes this error to raise.

In [3]: s = pd.Series([
   ...:     'nan',
   ...:     "2015-03-14T16:15:14.123-08:00",
   ...:     "2019-03-04T21:56:32.620-07:00",         # Note different TimeZone
   ...:     None,
   ...: ])

In [4]: pd.to_datetime(s)
Out[4]:
0                                 NaT
1    2015-03-14 16:15:14.123000-08:00
2    2019-03-04 21:56:32.620000-07:00
3                                None
dtype: object

This parsing goes down the array_to_datetime_object path where it assumes all incoming objects are string-like or null-like. In this case, datetime-like objects should be let through since that the expected return type, so I'd call this a bug.

@mroeschke mroeschke added Bug Timezones Timezone data dtype labels Apr 3, 2019
@mroeschke
Copy link
Member

Actually I agree with your assessment @dougthor42, this should raise the ValueError: Tz-aware datetime.datetime cannot be converted to datetime64 unless utc=True error.

@mroeschke mroeschke added Error Reporting Incorrect or improved errors from pandas and removed Bug labels Apr 3, 2019
@jreback jreback added this to the 0.25.0 milestone Apr 4, 2019
@dougthor42
Copy link
Author

So the presence of pd.Timestamp("1990-01-01") causes this error to raise.

Good catch! Though I could have sworn my testing didn't include that... ah well!

Glad to hear that it's an actionable item.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Error Reporting Incorrect or improved errors from pandas Timezones Timezone data dtype
Projects
None yet
Development

Successfully merging a pull request may close this issue.

3 participants