特征的前期融合与后期融合在召回、粗排、精排应用

本文探讨了推荐系统中的早期融合方法(如DNN)与后期融合(双塔模型)的区别,强调了早期融合在线推理代价大但精度高,而后期融合计算量小但预估准确性较低。粗排模型介于两者之间。重点介绍了用户塔、物品塔和交叉塔的计算策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前期融合:先对所有特征做concat,再输入DNN,一般常见于精排模型

特点:线上推理代价大,若有n个候选item需要做n次模型计算

后期融合:把用户和物品特征分别输入不同的神经网络,不对用户和物品做融合,常见于召回双塔

特点:线上计算量小,用户塔只需要做一次线上推理,计算用户表征a,物品表征b事先存储在向量数据库,物品塔在线上不做推理;预估准确性不如精排模型。

粗排模型:一般介于前期融合和后期融合之间,比如三塔模型

前期:

  • 用户塔:只有一个用户,线上推理一次,即时用户塔计算量很大也费不了多少资源
  • 物品塔:有n个物品理论上要做n次推理,PS缓存物品塔输出向量,避免绝大部分推理
  • 交叉塔:统计特征动态变化缓存不可行,有n个物品交叉塔必须做n次推理

后期:

  • 有n个物品模型上层需要做n次推理,粗排模型推理大部分计算量在模型上层

引申问题:双塔在召回和粗排有啥区别

双塔模型在召回和粗排的区别-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值