目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于计算机视觉的公共场所多目标跟踪系统
课题背景和意义
行人多目标跟踪作为计算机视觉中的重要研究方向,广泛应用于智能监控、交通管理和人机交互等领域。随着城市化进程加快,行人流动性增大,传统的跟踪方法面临遮挡、复杂背景和实时性等诸多挑战。基于不同技术的行人多目标跟踪方法,如光流法、卡尔曼滤波、粒子滤波等,能够提供多样化的解决方案。这些方法各有其优缺点,通过结合多种技术,有望提升跟踪的精确度和鲁棒性,为实际应用提供更有效的支持。
实现技术思路
一、算法理论基础
1.1 多目标跟踪
目标跟踪是在视频序列中持续追踪多个目标的过程,旨在实现对目标的连续性跟踪与识别。目标跟踪的主要任务是在给定的图像序列中找到移动的物体,并对这些物体在不同帧之间进行识别和跟踪,确保为它们分配准确的ID。这些物体可以是人、车辆和各种动物等。多目标跟踪是在图像序列中精确地标识和跟踪不同类型的目标,使它们在不同帧之间能够保持连续的追踪。算法流程比较复杂,可以总结为四个关键步骤:目标检测、外观特征提取、运动信息提取和数据关联。
目标检测需要使用目标检测器来探测视频帧中的目标,负责在视频帧中标记出所有目标的位置,并输出目标的置信度和类别信息,为后续的跟踪提供基础。近年来,基于深度学习的目标检测器(如Faster R-CNN、YOLO、SSD等)已经取得了巨大的进步,能够在复杂场景下高效准确地检测目标。目标检测首先对输入的图像或视频帧进行分析,定位可能包含目标的区域。在定位到目标区域后,目标检测器会为每个可能的目标生成一个边界框,并给出边界框的位置和宽高。目标检测不仅定位目标,还要对每个边界框内的内容进行分类,确定该区域内的物体属于哪个类别并给出置信度。在多目标跟踪的初始阶段,目标检测提供了起始的目标位置和类别信息,帮助多目标跟踪算法建立目标的初始轨迹。目标检测器的准确率直接影响多目标跟踪的效果。
外观特征提取在多目标跟踪中扮演着重要角色,可以帮助多目标跟踪算法区分不同行人。在目标检测阶段后,每个目标都会被分配一个唯一的检测框。接下来的步骤是为每个目标提取外观特征,以便在后续帧中对其进行识别和跟踪。这些外观特征包括目标的颜色、纹理特征和形状特征。在多目标跟踪中,需要根据目标的外观特征进行匹配和相似度计算,以确定目标在不同帧之间的匹配关系。提取的外观特征用于计算行人之间的相似度,进而确定是否属于同一目标。常用的方法是使用行人重识别网络从目标区域提取外观特征向量。
多目标跟踪还需要考虑目标的运动信息。运动信息可以通过目标在连续帧中的位置变化来获取,通常使用光流、卡尔曼滤波器或其他运动模型来估计目标的运动。运动信息对于预测目标下一帧位置、解决目标遮挡等问题非常重要。卡尔曼滤波是一种用于估计动态系统状态的有效方法,其基本原理是利用系统的动态模型和测量数据来递归地估计系统的状态。其工作流程包括两个主要步骤:预测和更新。预测步骤中,利用系统的动态模型和当前状态的估计值,预测系统在下一个时间步的状态。在更新步骤中,利用测量数据和预测的状态进行比较,根据观测模型更新状态的估计值,最终获得更准确的状态估计值。
数据关联是多目标跟踪算法的最后一个步骤,即将前一帧和当前帧中检测到的目标进行匹配和关联,形成连续的轨迹。常见的关联方法包括匈牙利算法、最小成本最大流算法和贪心匹配。最终的跟踪结果通过将不同帧中目标一一关联起来,形成完整的轨迹。绝大多数多目标跟踪算法都采用匈牙利算法做最后的匹配,确保跟踪的准确性和稳定性。
1.2 深度学习
DeepSORT是在SORT的基础上发展而来的多目标跟踪算法,结合了目标检测、外观特征提取、运动信息提取和数据关联等多个步骤。该算法利用深度学习技术从目标中提取外观特征,这些特征具有更强的代表性和区分性,能够有效区分不同目标。通过卷积神经网络提取的深度特征包含了丰富的视觉信息,使得跟踪过程更为准确和鲁棒。DeepSORT基于卡尔曼运动预测模型,在连续帧之间预测目标的运动信息,帮助处理目标的遮挡和外观变化。结合目标的外观特征和运动信息,通过数据关联算法(如匈牙利算法)将目标跟踪结果与先前的跟踪实例进行关联。DeepSORT具备处理多个目标的能力,即使在目标之间存在重叠或遮挡的情况下,也能准确跟踪目标。
DeepSORT的跟踪流程中,为了解决长时间遮挡导致的卡尔曼滤波器不准确预测、马氏距离带来的不确定性和轨迹碎片化等问题,引入了级联匹配策略。这一策略通过赋予更频繁出现的目标优先权,使得这些目标在跟踪过程中保持更好的持续性,减少因遮挡等因素导致的轨迹中断。在匹配过程中,依据目标出现的频率和历史跟踪情况设定匹配策略,使得频繁出现的目标更容易与检测结果匹配,从而保持目标轨迹的连续性和稳定性,降低轨迹碎片化程度,提高多目标跟踪的准确性和稳定性。
数据关联过程的关键在于构建相似度矩阵,该矩阵用于度量检测到的目标与已有轨迹之间的相似度。相似度矩阵的构建基于两个主要指标:一是通过卡尔曼滤波获得的运动信息相似度,采用马氏距离来度量;二是外观信息的相似度,通过深度学习模型提取的特征进行计算。通过这些方法,DeepSORT能够在复杂环境中实现高效且准确的多目标跟踪。
二、 数据集
2.1 数据集
选择行人监控视频作为数据源,可以从公共场所的监控系统获取视频数据,或者使用公开的监控视频库。视频应包含不同场景和条件,例如高峰时段、低峰时段、不同天气和光照条件,以确保数据的多样性。对采集到的视频进行分帧处理,提取出关键帧作为静态图像。可以设定时间间隔,例如每隔1秒提取一帧,以避免冗余并确保每帧图像中包含足够的目标信息。使用专业的标注工具LabelImg对提取的图像进行标注。在标注过程中,为每个行人绘制边界框,并为其分配唯一的ID,以便于后续的跟踪。可以标注其他信息,例如目标的状态(行走、停留等)和特征(如衣着颜色、携带物品等),以丰富数据集的信息量。
2.2 数据划分
将数据集划分为训练集、验证集和测试集。通常按70%(训练集)、20%(验证集)和10%(测试集)的比例进行划分,确保每个子集中样本的代表性,涵盖不同场景和条件,以便模型能够有效进行训练和评估。为了增强数据集的多样性,可以采用数据扩展技术。常见的方法包括:
- 图像翻转:随机进行水平或垂直翻转。
- 旋转:随机选择角度对图像进行旋转。
- 缩放:改变图像的尺寸,同时保持目标的完整性。
- 裁剪:随机裁剪图像的一部分,保留目标在图像中的比例。
- 颜色变化:调整图像的亮度、对比度、饱和度等参数
三、实验及结果分析
3.1 实验环境搭建
3.2 模型训练
数据集应包含多个目标在不同场景和条件下的运动轨迹,确保多样性和代表性。一般来说,数据集应该涵盖不同的人流密度、光照条件、天气变化以及视角多样性等因素,以提高模型的泛化能力。在标注阶段,使用专业的标注工具(如LabelImg或VOTT)为每个目标分配唯一的ID,并在每一帧中绘制目标的边界框。标注时应注意框的精确度,以确保后续模型训练时能获得准确的目标位置信息和运动轨迹。
import cv2
import os
# 假设视频路径和输出帧的路径
video_path = 'input_video.mp4'
output_folder = 'frames/'
os.makedirs(output_folder, exist_ok=True)
# 读取视频帧
cap = cv2.VideoCapture(video_path)
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
cv2.imwrite(os.path.join(output_folder, f'frame_{frame_count}.jpg'), frame)
frame_count += 1
cap.release()
在每一帧中,首先需要检测目标。可以使用现有的目标检测算法,如YOLO、Faster R-CNN或SSD,来识别并定位每个目标。这些算法通常会输出目标的边界框及其类别和置信度。在实际应用中,目标检测的准确性对后续的跟踪过程至关重要,因为错误的检测会直接影响到跟踪的稳定性和准确性。
import cv2
import numpy as np
# 加载YOLO模型
net = cv2.dnn.readNet('yolov3.weights', 'yolov3.cfg')
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# 检测目标
def detect_objects(frame):
height, width = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outputs = net.forward(output_layers)
boxes, confidences, class_ids = [], [], []
for output in outputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5: # 设定置信度阈值
center_x, center_y = int(detection[0] * width), int(detection[1] * height)
w, h = int(detection[2] * width), int(detection[3] * height)
x, y = int(center_x - w / 2), int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
return boxes, confidences, class_ids
通过卡尔曼滤波器,可以有效地对目标的运动轨迹进行建模。卡尔曼滤波器利用系统的动态模型和测量数据,递归地更新目标的位置估计。其基本流程包括两个主要步骤:预测和更新。在预测步骤中,卡尔曼滤波器根据当前状态估计目标在下一时间步的可能位置;在更新步骤中,利用检测数据与预测位置进行比较,从而更新状态估计值。这种方法能够有效处理目标的遮挡和运动不确定性,提高跟踪的精度和稳定性。常见的关联方法包括匈牙利算法、最小成本最大流算法和贪心匹配等。通过构建相似度矩阵,可以量化检测到的目标与已有轨迹之间的相似性,进而选择最佳匹配。
import numpy as np
class KalmanFilter:
def __init__(self):
self.kf = cv2.KalmanFilter(4, 2)
self.kf.measurementMatrix = np.array([[1, 0, 0, 0],
[0, 1, 0, 0]], np.float32)
self.kf.transitionMatrix = np.array([[1, 0, 1, 0],
[0, 1, 0, 1],
[0, 0, 1, 0],
[0, 0, 0, 1]], np.float32)
self.kf.processNoiseCov = np.array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]], np.float32) * 0.03
def predict(self):
return self.kf.predict()
def update(self, measurement):
return self.kf.correct(measurement)
DeepSORT算法是对SORT算法的扩展,结合了目标检测、外观特征提取、运动信息估计和数据关联等多个步骤。通过深度学习技术,DeepSORT利用卷积神经网络从目标中提取外观特征,这些特征能够更好地区分不同的目标。DeepSORT基于卡尔曼滤波模型,预测目标在连续帧之间的运动信息,进而处理目标的遮挡和外观变化。结合目标的外观特征和运动信息,通过数据关联算法(如匈牙利算法)将目标跟踪结果与先前的跟踪实例进行关联,使得DeepSORT在复杂环境中能够高效且准确地处理多个目标的跟踪任务。
class DeepSORT:
def __init__(self):
self.trackers = []
self.kf = KalmanFilter()
def update(self, detections):
# 更新卡尔曼滤波器和检测
# 经过运动预测和数据关联过程
pass
def predict(self):
# 预测目标位置
pass
海浪学长项目示例:
最后
我是海浪学长,创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!