毕业设计:基于计算机视觉的车辆跟踪与距离测量系统 人工智能

目录

前言

课题背景和意义

实现技术思路

一、算法理论基础

1.1 卷积神经网络

1.2 目标检测算法

二、 数据集

2.1 数据集

2.2 数据扩充

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于计算机视觉的车辆跟踪与距离测量系统

课题背景和意义

       随着城市交通的快速发展,车辆的数量不断增加,交通安全和效率问题日益突出。车辆跟踪检测与测距技术可以有效地监测交通流量、识别交通违法行为、分析交通拥堵情况,从而为城市交通管理提供重要数据支持。利用深度学习和计算机视觉技术,可以开发出高效的车辆识别和跟踪系统,实现对车辆的精确测距。这不仅有助于提升交通管理的智能化水平,还能为智能交通系统的建设奠定基础。研究车辆跟踪检测与测距的课题,具有重要的实际应用价值和社会意义。

实现技术思路

一、算法理论基础

1.1 卷积神经网络

       卷积神经网络是一种深度学习模型,专门用于处理具有网格结构的数据,例如图像。与传统的全连接神经网络不同,CNN通过引入卷积层、池化层和激活函数,实现了局部感知和权重共享的特性,使其在图像分类、目标检测和语义分割等任务中表现出色。CNN的基本结构通常包括输入层、多个卷积层和池化层交替堆叠,最后接上全连接层和输出层。这种架构可以有效提取图像中的空间特征,从而提高模型的识别能力和准确性。

       卷积层是CNN的核心组成部分,负责提取输入数据的特征。通过使用多个卷积核(滤波器)对输入图像进行卷积操作,卷积层能够生成特征图,从而捕捉图像中的局部特征。每个卷积核在图像上滑动,通过点乘计算生成特征图的不同区域。卷积操作的关键在于局部连接和权重共享,这使得模型能够学习到平移不变的特征。此外,卷积层通常会结合激活函数以引入非线性,增强模型的表达能力。

毕业设计:基于计算机视觉的车辆跟踪与距离测量系统 人工智能

       池化层在CNN中用于降低特征图的空间维度,减少计算量,防止过拟合。常见的池化操作包括最大池化和平均池化。最大池化会选择池化窗口内的最大值,而平均池化则计算窗口内所有值的平均值。通过将特征图的尺寸缩小,池化层能够提取出更具抽象性的特征,同时保持重要的信息。池化操作通常在卷积层后进行,使得网络能够逐步提取更高层次的特征。

毕业设计:基于计算机视觉的车辆跟踪与距离测量系统 人工智能

       全连接层通常位于CNN的最后部分,负责将提取到的特征映射到最终的输出。全连接层通过将上一个层的所有神经元与当前层的每个神经元相连接,得以充分利用之前层学到的特征。在图像分类任务中,通常会将全连接层的输出通过softmax激活函数转化为概率分布,表示每个类别的预测结果。全连接层的数量和大小可以根据具体任务进行调整,以优化模型表现。

毕业设计:基于计算机视觉的车辆跟踪与距离测量系统 人工智能

       卷积神经网络在车辆跟踪与距离测量系统中具有显著优势,能够自动提取复杂特征,适应不同环境变化,实时处理高分辨率图像,准确识别和定位目标,减少人工特征设计的需求,增强系统的鲁棒性和精度,支持多目标跟踪,提高检测速度和效率,适应动态场景中的目标变换和 occlusion,优化数据处理和计算资源的使用。

1.2 目标检测算法

       YOLOv5s的网络结构设计旨在实现高效的目标检测,同时保持较高的检测精度。它采用了一种改进的单阶段检测架构,主要由三个关键部分组成:骨干网络、颈部网络和头部网络。

  • 骨干网络主要负责提取输入图像的特征。该部分通常采用交叉阶段部分网络的结构,通过分组卷积和残差连接来加深网络的深度,从而有效提高特征提取的能力。交叉阶段部分网络的设计理念是将特征图分为多个分支进行处理,减少计算量的同时保持信息流动,有助于减轻梯度消失的问题。这种结构使得YOLOv5s在保持较低计算复杂度的情况下,能够提取出丰富的图像特征,适应各种目标检测任务。

毕业设计:基于计算机视觉的车辆跟踪与距离测量系统 人工智能

  • 颈部网络的主要作用是将骨干网络提取的特征进行融合和增强,以便为后续的目标检测提供更为丰富的上下文信息。YOLOv5s采用了特征金字塔网络的结构,通过自上而下的特征融合策略,将不同尺度的特征图进行连接。这种方式使得模型能够有效整合多层次特征,提高对不同大小目标的检测能力。此外,颈部网络还通过路径聚合模块进一步增强特征的传递效率,减少信息损失,从而提升了模型的整体性能。

毕业设计:基于计算机视觉的车辆跟踪与距离测量系统 人工智能

  • 头部网络负责最后的目标检测任务,包括边界框回归和类别预测。YOLOv5s在头部网络中使用了自适应锚框机制,通过学习最优的锚框尺寸来提高对不同目标的检测性能。在输出层,YOLOv5s不仅预测目标的边界框位置和大小,还同时输出目标的类别概率。通过使用激活函数,模型能够为每个锚框生成独立的类别置信度。这一设计使得YOLOv5s在复杂场景中具有较强的鲁棒性,并能够在实时检测任务中保持高效性和准确性。

       YOLOv5s的网络结构通过精心设计的骨干、颈部和头部网络相结合,充分发挥了深度学习的优势,实现了高效的目标检测,适合各种实时应用场景。

二、 数据集

2.1 数据集

       图像采集选择了自主拍摄和互联网采集相结合的方式。自主拍摄通过在不同场景和天气条件下拍摄车辆,确保了数据的多样性和真实感。互联网采集则通过公开数据集和网络视频获取了大量标注完善的车辆图像,这样可以有效补充自主拍摄中可能存在的不足,从而构建一个具有较高代表性和覆盖面的数据集。使用了专门的标注工具进行标注工作,确保每一张图像中的车辆能够被准确识别和框选。通过使用labeling工具,标注人员能够为每一辆车辆绘制边界框,并标注其类别信息,这一过程不仅提高了标注的效率,还保证了数据的准确性。

2.2 数据扩充

       将整个数据集分为训练集、验证集和测试集,以确保模型能够在不同的数据上进行训练和评估。训练集用于模型的学习,验证集用于调优超参数,而测试集则用于最终评估模型的性能。此外,我们还采用了数据扩展技术,如随机裁剪、旋转、翻转和颜色变换等,来增加数据集的多样性。这一过程不仅能提高模型的泛化能力,还能有效减少过拟合现象,从而提升车辆跟踪与距离测量方法的整体性能。

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

       将收集到的图像数据进行整理和清洗,包括去除模糊、低质量的图像,以确保数据集的高质量。接着,我们对图像进行统一的尺寸调整、归一化处理,确保输入数据符合模型的要求。此外,通过数据扩展技术,生成多样的训练样本,进一步增强模型的鲁棒性。数据预处理的目的是让模型在训练时能够更好地学习到数据中的特征。

import cv2
import os

def preprocess_images(image_folder, target_size):
    images = []
    for filename in os.listdir(image_folder):
        img = cv2.imread(os.path.join(image_folder, filename))
        img_resized = cv2.resize(img, target_size)
        images.append(img_resized)
    return images

# 调用预处理函数
processed_images = preprocess_images('data/images', (640, 640))

       YOLOv5s因其出色的速度和准确性,适合实时应用场景。我们根据具体任务需求,配置模型的参数,包括输入尺寸、锚框设置和学习率等。接下来,加载预训练模型,利用迁移学习的方式,加快训练速度并提高模型性能。使用准备好的训练集对YOLOv5s进行训练。通过定义损失函数和优化器,逐步调整模型参数以最小化损失。训练过程中,我们监测训练损失和验证损失,确保模型在训练集和验证集上均表现良好。为了提高训练效果,我们还使用了学习率调度技术,根据训练进度动态调整学习率。训练完成后,我们将保存训练好的模型,以便后续测试和评估。

import torch
from torch.optim import Adam

# 定义损失函数和优化器
optimizer = Adam(model.parameters(), lr=0.001)

# 开始训练
for epoch in range(num_epochs):
    model.train()  # 设置模型为训练模式
    for imgs, lbls in train_loader:
        optimizer.zero_grad()
        outputs = model(imgs)
        loss = compute_loss(outputs, lbls)  # 计算损失
        loss.backward()
        optimizer.step()
    print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')

       使用多个评价指标来全面衡量模型的表现,包括精确率(P)、召回率(R)、平均精度(mAP)、每秒帧数(FPS)以及模型大小。精确率和召回率用于评估模型的检测准确性,mAP则提供了整体性能的量化指标,FPS用于衡量模型的实时处理能力,而模型大小则有助于理解模型的部署可行性。根据评估结果,调整模型的超参数,进行再训练和验证,以提升模型的性能。此外,可以考虑使用更复杂的网络结构或增加数据集的多样性,进一步提高模型的准确性和鲁棒性。

海浪学长项目示例:

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值