高级爬虫——数据清洗与处理

数据清洗是数据处理和分析过程中极其重要的一环。爬取的原始数据往往会包含噪声、不完整性、不一致性等问题,因此清洗和规范化数据是获得高质量数据集的必要步骤。本节将详细介绍 Pandas 库的基本使用数据清洗的常用操作,结合代码实例,为开发者提供实用、可行的解决方案。


1. Pandas 库的基本使用

1.1 什么是 Pandas?

Pandas 是 Python 中用于数据分析和处理的高性能库,提供了丰富的工具来操作结构化数据和时间序列数据。Pandas 的核心数据结构是:

  • Series:一维数组,类似于 Python 列表或 NumPy 数组。
  • DataFrame:二维表格数据结构,类似于 Excel 表或 SQL 表。
1.2 安装 Pandas

确保 Pandas 已安装:

pip install pandas
1.3 加载与保存数据

Pandas 支持多种数据格式的读取与保存,包括 CSV、Excel、JSON、SQL 等。

  • 读取 CSV 文件

    import pandas as pd
    data = pd.read_csv('example.csv')
    print(data.head())  # 查看前 5 行数据
  • 保存数据为 CSV 文件

    data.to_csv('output.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

好看资源分享

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值