数据清洗是数据处理和分析过程中极其重要的一环。爬取的原始数据往往会包含噪声、不完整性、不一致性等问题,因此清洗和规范化数据是获得高质量数据集的必要步骤。本节将详细介绍 Pandas 库的基本使用 和 数据清洗的常用操作,结合代码实例,为开发者提供实用、可行的解决方案。
1. Pandas 库的基本使用
1.1 什么是 Pandas?
Pandas 是 Python 中用于数据分析和处理的高性能库,提供了丰富的工具来操作结构化数据和时间序列数据。Pandas 的核心数据结构是:
- Series:一维数组,类似于 Python 列表或 NumPy 数组。
- DataFrame:二维表格数据结构,类似于 Excel 表或 SQL 表。
1.2 安装 Pandas
确保 Pandas 已安装:
pip install pandas
1.3 加载与保存数据
Pandas 支持多种数据格式的读取与保存,包括 CSV、Excel、JSON、SQL 等。
-
读取 CSV 文件:
import pandas as pd data = pd.read_csv('example.csv') print(data.head()) # 查看前 5 行数据
-
保存数据为 CSV 文件:
data.to_csv('output.